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Convergence of the Improve Levenberg-Marquardt Method For solving 

Singular Perturbation Problems  

 

 

 

 

Abstract : 

         In this paper , we overcome and over passing the disadvantages of the 

standard LM training algorithm for solving Singular Perturbation Problems in the 

case of whether the matrix rectangular or singular, by the new technique that 

we suggest SVD of J and        J
-1

  . Secondly suggest new calculation of 

combination coefficient (μk)  that is,   Consider the nonlinear 

performance equations E(w) = 0 where E(w):  is continuously 

differentiable and has nonempty solution  and we refer   to the 2-norm in all 

cases .Starting with the suitable choice of the parameter , we prove that, if  

 gives the error bound for some , then the sequence  

generated using the modified LM algorithm converges super linearly and 

quadratically to the solution of equation E(w) = 0. 

1. Introduction  

All possible solution , can be applied to get the optimal value of weights for 

feed forward neural networks. Naturally, local searches are generally gave the local 

solutions; once attempt to avoid this limitation. The performance for training varies 

depending on the network configuration and error surface for a given problem. 

Since the gradient information of error surface is available for the most widely 

applied network configurations, the most popular optimization methods have been 

variants of gradient based BP algorithms [1]. Of course, this is sometimes the 

result of an inseparable combination of network configuration and training 

algorithm which limits the freedom to choose the optimization method. For small 

networks the problem of local minima can be efficiently avoided by using repeated 

trainings, changing the length of step size and randomly initialized weight values 
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[4]. Nevertheless, global optimization algorithms may be useful for validation of 

an optimal solution achieved by BP training algorithm.  

In the training process the parameters of the network are updated as the 

following rule [1]:  

                    wk+1 = wk + η k                                                                          (1) 

Where, 

η: is learning rate; 

∆wk: computed by one of training algorithm. 

          The learning rate η is used to determine the size of the weight update in most 

of the training algorithms. 

          There are several back propagation training algorithms: gradient descent 

(GD), and gradient descent with momentum. These two methods are often too slow 

for practical problems [3]. This paper consists some training algorithms and its  

modification which are high performance process, it can assist to converge faster 

than the previous back propagation training algorithms.      

2. Performance Functions  

         Performance functions are used in supervised training type to help update the 

network parameters. Supervised training, ANN is provided with the desired output 

for each input. The error is defined as the difference between the desired output 

and the network output (called actual output). Network parameters are updated 

according to one of two performance functions to reduce the network error [1]:                                                                                                                     

1. Least mean of squared errors (MSE): minimizes the average of the      

squared errors. 

2. Least sum of squared errors (SSE):  minimizes the sums of the squared 

errors, it is calculated by: 

         E(x, w) =                                                            (2)     

Where, 

x: is the input vector; 

w: is the weight vector; 
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: is the training error at output m when applying input p and it is defined 

as: 

                                                                         (3) 

Where, 

d: is the desired output vector; 

t: is the actual output vector; and 

g: is the gradient defined as the first – order partial derivative of total error 

function (2), i.e., 

       g =                                                          (4) 

 

3. Levenberg-Marquardt Algorithm (trainlm)  

 

          Levenberg–Marquardt algorithm (LM) is one of the best training algorithm 

which has 2
nd

 order convergence without having to compute the Hessian matrix. 

When the performance function has the form of a sum of squares, then the Hessian 

matrix can be approximated as J
T
J and the gradient can be computed as g  

J
T
E(wk), where J is the Jacobian matrix, which contains first derivatives of the 

network errors with respect to the parameters (weights and biases), and E(wk),  is a 

vector of network errors. The Levenberg–Marquardt algorithm uses the following 

approximation to the Hessian matrix [6]: 

       H                                                                                   (5) 

Where; 

µ: is always positive, called combination coefficient and I: is the identity matrix. 

        From equation (5), one may notice that the elements on the main diagonal of 

the approximation Hessian matrix will be greater than zero. 

       Therefore, uses this approximation (equation (5 ) in the following Newton 

update:  

                                                    (6)                     
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when   0, this is just Newton’s method, when  is large, this becomes gradient 

descent with a small step size [1]. If µ is very big, it can be interpreted as the 

learning coefficient in the training process (1):  η =  

         The only drawback related to this training algorithm is the exact evaluation of 

the Hessian matrix (H) which is computationally intensive. The computation of the 

inverse Hessian (H
-1

) is even more computationally intensive [2]. 

4. Improve Levenberg-Marquardt Training Algorithm  

        In this thesis, we over passing the drawback of LM algorithm, firstly we 

suggest SVD of J and J
-1

, if a rectangular matrix or singular, then we use 

SVD of  Secondly, we suggest new calculation of μk , that is,   

        Consider the nonlinear performance equations:                                        

                E(w) = 0                                                                             (7)       

where E(w):  is continuously differentiable and E(x) is Lipschitz 

continuous, that is, , where  is Lipschitz 

constant. Suppose that the equation (7) has nonempty solution  and we refer 

  to the 2-norm in all cases. Starting with the suitable choice of the parameter , 

we prove that, if   gives the error bound for some , then the 

sequence  generated using the modified LM algorithm converges super 

linearly to the solution of equation (7). 

Now we will take some definitions, hypotheses, axioms and theorems to help the proof 

of convergence for modified LM algorithm depending on the above condition.  

Definition 1 [5] 

Let N be a subset of  such that  . We say that   provides a local 

error bound on N for system (7), if there exists a positive constant  such that: 

 

Note, if  is nonsingular depending on solution at  of equation (7), then  

represents the unique solution, hence  gives an error bound for neighborhood of  .  

5. Convergence of the Improve Levenberg-Marquardt Method 
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To study the rate of convergence for the modified LM algorithm, we introduce the 

following hypotheses.     

Hypothesis 2 

       Suppose that  is continuously differentiable, and its Jacobian  satisfies 

Lipschitz condition for neighborhood of , i.e., ∃ a positive constants L and 

 such that: 

                                                   (8)                    

(a) Let  have an error bound on  to the equation (7), i.e., ∃ a constant 

 such that: 

                         (9) 

By Hypothesis 2.2(a), we have: 

 ,        (10) 

                                                                                                  

and, ∃ a constant  > 0, such that:    

(11)                                                           

     Now, to study the convergence of the modified Levenberg-Marquardt algorithm, starting with 

the update rule of the weight which is computed by: 

 

where  is the search direction given as: 

                           (12) 

for simplicity, we use the notations: ,  from now on. 

 Hypothesis 3 

Suppose that    for all k, where . Yamashita and Fukushima in [5] 

showed the quadratic convergence of the Levenberg-Marquardt method for nonsingular system 

based on the analyses of  an unconstrained optimization problem. Here, we prove the super linear 

convergence of the modified LM algorithm (second type) which by choosing   , 

then, obtain the convergence of the algorithm depending on the SVD for the Jacobian matrix.We 

denote  the vector in  that satisfies:  

Lemma 5.4 
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If the hypotheses 2 and 3 are satisfied and  then ∃ a constant  

such that:                                                 (13) 

Proof 

Since  we have: 

 

       , 

Means that . Hence from (2.28) it follows: 

 

And since from hypothesis (3) we have 

 

Then from (11) the Levenberg - Marquardt parameter  satisfies: 

                        (14) 

Define,  

                                            (15) 

From (12) it follows that  is a fixed point of . Since, 

 and , we get:   

Since,   

            Then, by definition of  we have: 

 

 

From (10) and since   

Then we have 
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The above inequality implies that:  

         

From hypothesis (2.3) we get 

  

Where   

Lemma 5.5 

If the hypotheses 2 and 3 are satisfied and   then we have: 

              (16) 

Where   

Proof 

Since  and   

              (by definition of  )                                   

                               (by (10)) 

           (by (14)) 

 

By Taylor series we get  

 

( by definition of   

  ( by (13)) 



 2019مجلة أبحاث ميسان ، المجلد الخامس عشر ، العدد التاسع والعشرون ، حزيران سنة 

 

 

 

34 

 

 

Multiplying both sides of the last inequality by   we get 

 

Since,                                         (by (9))  

Then         , 

Hence,      

  

Theorem 5.6 

If the hypotheses (2) and (3) are satisfied and  is chosen to be sufficiently near to  

 then  converges super linearly to the solution  of equation (7). 

Proof 

Let  . Firstly by induction, we show that: 

If , i.e.,  then   for all k. 

From lemma 2.4, it follows that: 

 

                                   (by (13)) 

 

Which means . Suppose      for .  
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Then we have (from Lemma 2.5): 

 

So, from the definition of r, we get: 

 

 

 

 

 

 

 

 

 

Hence,   
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So   Now, if  is chosen near to , then all  contained in  

. Then from (16) we get: 

 

 

Then  

 

Which implies, due to Lemma 2.4, that: 

 

Thus   

 

 

So, the sequence of weights converges to some point . It is clear that: 

 

 

Then the above inequality implies that:  
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         , ∀ large k.                  (17) 

Thus from (13), (16) and (17) we have: 

 

Hence,  converges to the solution . Therefore, we have: 

 ∈R
+ 

           The above inequality shows   converges super linearly to the solution  where 

, and converges quadratically where . 

 

If,  is a rectangular matrix or singular, then we use SVD of  (i.e. first type 

of modification), Now, suppose that  converges to , and take the SVD of the 

 which is: 

              

 

Where and rank  

Suppose that the SVD of  and its decomposition has the form: 
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                       (18) 

Where  , rank and rank  

Now, we neglecting  in  , i= 1, 2, 3. Consequently, (18) can be 

written as: 

 

Now, to prove the quadratic convergence of the modification for LM algorithm (first 

type).  

Lemma 5.7 

If the hypothesis 2 is satisfied and  , then we have: 

(a)  

(b)  

(c)  

Proof    

The result of (a) immediately follows by (11). From the hypothesis 2 (a), and theory of 

matrix perturbation (see [28]) we get: 

        

From the above relation, we get: 

        and                                (19) 

Let                                                                                     (20) 

where  is representing the pseudo inverse of , and  is the least squares solution of min 

, now multiply (20) by  from left side we get: 

 

 

 

 

                         

Then by taking  for two sides we have: 
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.  The proof (c) is completed. 

Now let , and . Since  is the least squares solution of 

min , from (20) and (19) it follows that: 

 

 

 

 

Then by taking  for two sides we have: 

 

 

                                 

From (10) we get: 

 

 

 

From (19) we have: 

 

 

Hence  

By the orthogonal property of  and , we get the result of (b). 

                      . The proof is completed. 

Theorem 5.8  

If the hypotheses 2 and 3 are satisfied and the sequence of the weights which 

generated by the modified Levenberg-Marquardt algorithm, then  converges quadratically to 

the solution of equation (7). 

Proof 

The current iteration for search direction of modified LM algorithm is: 
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Apply the SVD of   , as:    ,   then we have: 

 

          

Since  is orthogonal, i.e.,  =  

  {since   diagonal matrix} 

 

Since  is orthogonal, i.e.,  =  

          

 

Hence, 

                                                       (21) 

Now when,  , then we have : 

                 (22)     

New, we need to prove   

According to the Taylor expansion, the objective function ( energy function or error 

function ) may be written as follows: 

 

                         {since }          

            Now we have: 
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{ Since  is orthogonal, i.e.,  =   and  } 

 

By the SVD 

=   (23) 

Since  converges to  super linearly, we assume that:  

 

Then from (19) we get: 

 

From (12) we have: 

 

 

 

 

 

From (24), we have: 

 

Also, , and  

Then: 
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           From the inequalities (25) and (26) together with (14) and Lemma 2.7 we have: 

 

 

(because   is orthogonal , i.e.,  = ) 

From (14) we get: 

 

From lemma (2.7) we get: 

 

 

Let , then we get  

                                  (27) 

From (2.28), we get 

 

By Taylor series we have: 

 

From (27) and lemma (2.4) we get 

 

 

It follows from (17) and Lemma 5.4 that 

             

Which implies that the sequence of weight converges quadratically to , namely, 

 

The proof is completed. 
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The Flowchart of modified Levenberg - Marquardt algorithm which explains the 

implementation of the algorithm with the SVD for Jacobian matrix given in Figure (1). 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Flowchart of modify Levenberg-Marquardt algorithm 
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