Modules With the δ -coclosed Intersection Property

Tha'ar Younis Ghawi¹

Department of Mathematics, College of Education AL-Qadisiyah University, AL-Qadisiyah, Iraq

Inaam Mohammed-Ali Hadi²

Department of Mathematics, College of Education Ibn

AL-Haitham, Univ. Of Baghdad, Iraq

Abstract. In this article we present and investigate the notion of modules which the intersection of any two δ -coclosed submodules in it is again δ -coclosed, such modules, namely, modules with the δ -coclosed intersection property. Many basic properties of δ -coclosed submodules, and modules with the δ -coclosed intersection property are given in this work.

Mathematics Subject Classification (2010): 16D10, 16D70.

Key words: δ -coclosed submodules, δ -coclosure submodules, modules with the δ - CCIP, U δ CC modules, Weakly δ -supplemented modules.

1. Introduction

Throughout this article, all rings are associative with identity and all modules are unitary right *R*-modules, unless otherwise stated. A submodule *N* of a module *M* is said to be essential (briefly $N \leq_e M$) if $N \cap K \neq 0$ for any nonzero submodule *K* of *M* [4]. For an *R*-module *M*, the set $Z(M) = \{m \in M \mid ann_R(m) \leq_e R\}$ is called a singular submodule. A module *M* is called singular if Z(M) = M, and it is called nonsingular if Z(M) = 0 [4]. A submodule *N* of a module *M* is called *G*-singular (briefly $N \leq_{es} M$) if M/N is a singular module. A submodule *N* of *M* is called δ -small in *M* (briefly $N \leq_{es} M$) if for any C-singular submodule *K* of *M* with N + K = M implies K = M [8]. For $N, K \leq M$, *N* is called δ -coessential of *K* in *M* (briefly $N \leq_{see} K$ in *M*) if K/N is δ -small in M/N [6]. Clearly, every small submodule is δ -small, and hence every coessential submodule *N* of *K* in *M* is δ -coessential of *K* in *M*. A submodule *N* of *M* is called δ -coclosed (briefly $N \leq^{see} M$) if, whenever N/K is singular and N/K is δ -small in M/K for some $K \leq N$ implies K = N [3]. In this work we introduce and investigate the concept of modules with the δ -coclosed intersection property, where an *R*-module *M* is called module has δ -coclosed inte-rsection property if the intersection of any two δ -coclosed submodules of *M* is again δ -coclosed (briefly δ -CCIP). This paper is structured in two sections. In section 1, we stated some well-known properties of C-singular, δ -small, δ -coessential and δ -coclosed submodules, which needed in this work. In section 2, we present several general properties of modules with δ -CCIP. We prove that for an *R*-module *M*, if *M* has the δ -CCIP, then for any decomposition $M = A \oplus B$ and for all $\phi \in Hom_R(A, B)$, $Ker\phi$ is δ -coclosed in *M*. We will denotes $ann_R(M) = \{r \in R \mid rm = 0 \text{ for all } m(\neq 0) \in M\}$.

Before anything, we will list some known properties of C-singular, δ -small, δ -coessential and δ -coclosed submodules respectively.

Lemma 1.1 [4] Let *M* be an *R*-module and $N \le M$. If $N \le_e M$ then $N \le_{cs} M$. The converse is true, whenever *M* is nonsingular.

Lemma 1.2 [8] Let M be an R-module. Then the following hold.

- (*a*) Let $K \leq N$ and *L* are submodules of a module *M*.
 - (*i*) If $K \ll_{s} N$, then $K \ll_{s} M$.
 - (*ii*) If $N \ll_{s} M$, then $K \ll_{s} M$.
 - (*iii*) $N \ll_{s} M$ if and only if $K \ll_{s} M$ and $N/K \ll_{s} M/K$.
 - (*iv*) $N + L \ll_{s} M$ if and only if $N \ll_{s} M$ and $L \ll_{s} M$.
- (b) If $K \ll_{s} M$ and $\varphi: M \to N$ is a homomorphism, then $\varphi(K) \ll_{s} N$.

(c) If $K_i \leq M_i \leq M$ for (i = 1, 2), and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_s M_1 \oplus M_2$ if and only if $K_1 \ll_s M_1$ and $K_2 \ll_s M_2$.

Lemma 1.3 [5] Let *M* be a uniform (or singular) *R*-module and $N \subset M$. Then $N \ll M$ if and only if $N \ll_s M$.

Lemma 1.4 [5] Let M, N be an R-modules and let $A \le B \le C \le M$. Then

- (i) $B \leq_{sce} C$ in M if and only if $B/A \leq_{sce} C/A$ in M/A.
- (*ii*) $A \leq_{sce} C$ in M if and only if $A \leq_{sce} B$ and $B \leq_{sce} C$ in M.
- (*iii*) Let $\varphi: M \to N$ be an epimorphism. If $A \leq_{sce} B$ in M then $\varphi(A) \leq_{sce} \varphi(B)$ in N.

Lemma 1.5 [5] Let *M* be an *R*-module, and let $A \leq_{sce} B$ in *M*. Then

- (i) If $C \leq_{sce} D$ in M, then $A + C \leq_{sce} B + D$ in M.
- (*ii*) If $X \le M$, then $A + X \le_{sce} B + X$ in *M*. The converse is true if, $X \ll_s M$.
- (*iii*) If $X \ll_{s} M$, then $A \leq_{sce} B + X$ in M.

A module *M* is called δ -supplemented if, for every submodule *L* of *M*, there exists a submodule *K* of *M* such that M = L + K and $L \cap K \ll_s K$. In this case *K* is called δ -supplement of *L* in *M* [6]. A module *M* is called weakly δ -supplemented if, for every submodule *L* of *M*, there exists a submodule *K* of *M* such that M = L + K and $L \cap K \ll_s M$. In this case *K* is called a weak δ -supplement of *L* in *M* [3].

Lemma 1.6 [3] For an *R*-module *M* and a submodule *N* of *M*. Consider the following statements.

- (i) N is a δ -supplement submodule in M.
- (*ii*) N is a δ -coclosed submodule in M.
- (*iii*) For all $X \leq N$ and $X \ll_s M$ implies $X \ll_s N$.

Then $(i) \Rightarrow (ii) \Rightarrow (iii)$. If N has a weak δ -supplement in M, then (i) through (iii) are equivalent.

2. Modules with the δ -coclosed Intersection Property

We begin by the following Proposition.

Proposition 2.1 Every direct summand of a module is δ -coclosed.

Proof. Let *M* be an *R*-module and let *N* be a direct summand of *M*. For some $K \le M$, $M = N \oplus K$. To prove that *N* is a δ -coclosed submodule, let $X \le N$ with N/X singular and $N/X \ll_{s} M/X$, also $M/X = (N \oplus K)/X = N/X + (K + X)/X$, so by 3rd isomorphism theorem, $(M/X)/(K+X)/X \cong M/(K+X)$. We claim that M/(K+X) is singular. For any $m \in M$, m = n + k for some $n \in N$, $k \in K$. Now, let $r \in ann_{R}(n+X)$, nr + X = X; that is $nr \in X$, but (m+K+X)r = mr + K + X = nr + kr + K + X = K + X, so $ann_{R}(n+X) \subseteq ann_{R}(m+K+X)$. Since N/X is singular, $ann_{R}(n+X) \le_{e} R$, so $ann_{R}(m+K+X) \le_{e} R$, hence M/(K+X) is singular. But $N/X \ll_{s} M/X$, so M/X = (K+X)/X, then K + X = M = K + N. To prove that X = N, assume $x \in N \subseteq M$, x = a + b for some $a \in K$, $b \in X \subseteq N$ then $x - b = a \in N \cap K = 0$, thus x - b = 0, $x = b \in X$, then $N \subseteq X$ and hence N = X.

Now, we present the following example.

Example 2.2 Let $M = Z \oplus Z_2$ as Z-module, $A = (1, \bar{0})Z$ and $B = (1, \bar{1})Z$ are direct summands of M, so A and B are δ -coclosed submodules of M with $A \cap B = 2Z \oplus (\bar{0})$. Take $L = 4Z \oplus (\bar{0}), (A \cap B)/L = 2Z \oplus (\bar{0})/4Z \oplus (\bar{0})$ is singular, because for $t \in ann_R(m+L)$, where $m \in A \cap B$, then $mt \in L = 4Z \oplus (\bar{0})$ which implies that $t \in 2Z$ and so that $ann_R(m+L) = 2Z \leq_e Z$, hence $(A \cap B)/L$ is singular. On the other hand, $(A \cap B)/L$ is δ -small in M/L but $A \cap B \neq L$, thus $A \cap B$ is not δ -coclosed in M.

This example leads us to introduce the following.

Definition 2.3 A module *M* is said to have the δ -coclosed intersection property (briefly δ -CCIP) if, the intersection of any two δ -coclosed submodules of *M* is again δ -coclosed.

The following Proposition, gives some properties of δ -coclosed submodules.

Proposition 2.4 Let *M* be an *R*-module and let $K \le L \le M$. Then the following assertions hold.

(i) If $L \leq^{scc} M$, then $L/K \leq^{scc} M/K$.

(ii) If $L \leq^{scc} M$ and $N \ll_s M$, then $L + N/N \leq^{scc} M/N$.

(*iii*) If $K \leq^{scc} M$, then $K \leq^{scc} L$. The converse hold whenever $L \leq^{scc} M$.

Proof. (i) Let $N/K \leq_{sce} L/K$ in M/K and (L/K)/(N/K) which is isomorphic to L/N is singular, so by Lemma 1.4, $N \leq_{sce} L$, also $N \leq_{cs} L$ which implies N = L and hence N/K = L/K.

(*ii*) Suppose that $X/N \leq_{sce} (L+N)/N$ in M/N and $(L+N/N)/(X/N) \cong L+N/X$ is singular, so by Lemma 1.4, $X \leq_{sce} L+N$, also (L+N)/X is singular. Clearly, $X = (L \cap X) + N$, thus $(L \cap X) + N \leq_{sce} L+N$, but $N \ll_s M$, so by Lemma 1.5, $(L \cap X) \leq_{sce} L$. Moreover, we have $L/(L \cap X)$ is singular, to prove this: for all $(l+n) + X \in L + N/X$, we have $ann_R[(l+n) + X] \leq_e R$, so $ann_R(l+X) \leq_e R$. But $ann_R(l+X) \subseteq ann_R(l+L \cap X)$, hence $ann_R(l+L \cap X) \leq_e R$ for all $l \in L$; that is $L/L \cap X$ singular. But $L \leq^{scc} M$, so $L \cap X = L$, thus $X = (L \cap X) + N = L + N$. Therefore X/N = (L+N)/N.

(*iii*) Assume that $X \leq_{sce} K$ in L and $X \leq_{cs} K$, so $K/X \ll_{s} L/X$ and K/X is singular. Thus $K/X \ll_{s} M/X$ and K/X is singular; that is $X \leq_{sce} K$ in M and $X \leq_{cs} K$. But $K \leq^{scc} M$, so K = X and hence $K \leq^{scc} L$. Conversely, let $L \leq^{scc} M$. Assume that $K/X \ll_{s} M/X$ and K/X is singular. Since $X \leq L$, then by (i), $L/X \leq^{scc} M/X$ and hence by Lemma 1.6, $K/X \ll_{s} L/X$, but $K \leq^{scc} L$, thus K = X.

Lemma 2.5 Let *M* and *N* be *R*-modules with $\varphi: M \to N$ be an *R*-epimorphism. If *M* is weakly δ -supplemented, then *N* also is weakly δ -supplemented.

Proof. Let $X \le N$, then $\varphi^{-1}(X) \le M$. Since *M* is weakly δ -supplemented, so there exists $B \le M$ such that $\varphi^{-1}(X) + B = M$ and $\varphi^{-1}(X) \cap B \ll_s M$, then $X + \varphi(B) = N$ and $X \cap \varphi(B) \ll_s N$, this proving that *N* is weakly δ -supplemented.

Corollary 2.6 If *M* is a weakly δ -supplemented module and $B \le M$, then M/B is also weakly δ -supplemented.

Proof. It follow directly by taking the natural epimorphism $\pi: M \to M/B$.

Note: If *M* and *M* are two *R*-modules, $A \le M$ and $B \le M$ such that $A \ll_s M$ with $A \cong B$ then it is not necessary that $B \ll_s M$, as example: consider the *Z*-modules *Z*, *Q* and let $A = Z \le Q$, $B = Z \le Z$. It is clear that A = Z is a small submodule of *Q*, so it is δ -small in *Q* with $A \cong B$, but B = Z is not δ -small in *Z*.

However, we consider the following condition (t) for *R*-modules M, M':

- If $A \le M$ and $B \le M$ such that $A \ll_s M$ with $A \cong B$ implies $B \ll_s M$...(t)

Proposition 2.7 Let *M* be a weakly δ -supplemented *R*-module which satisfying condition (t), and $B \leq C$ are submodules of *M*. If $C/B \leq^{scc} M/B$ and $B \leq^{scc} M$, then $C \leq^{scc} M$.

Proof. Since *M* is a weakly δ -supplemented module, then by Corollary 2.6, *M/B* is also weakly δ -supplemented. Since $C/B \leq ^{scc} M/B$ and $B \leq ^{scc} M$, then by Lemma 1.6, C/B and *B* are δ -supplement submodules in M/B and *M* respectively. We have to show that *C* is a δ -supplement in *M*. Suppose C/B is a δ -supplement of C'/B in M/B and *B* is a δ -supplement of *B'* in *M*. Then M/B = C/B + C'/B and $C/B \cap C'/B = (C \cap C')/B \ll_s C/B$, also M = B + B' such that $B \cap B' \ll_s B$. Clearly, $B \cap B' \ll_s C$. We claim that *C* is a δ -supplement of $B' \cap C'$ in *M*. To prove this assertion, notice that $M = (C \cap C') + B'$ and M = C + C', so by [2, Lemma 1.1.6], $M = C + (B' \cap C')$. Now, $C = C \cap (B + B') = B + (C \cap B')$ and $C \cap C'/B \ll_s C/B$, but M = B + B', so by [7, Lemma 3.15], $\frac{(C \cap C') \cap B'}{B \cap B'} \cong \frac{C \cap C'}{B}$. By condition (t), $\frac{(C \cap C') \cap B'}{B \cap B'} \ll_s \frac{C}{B \cap B'}$ but $B \cap B' \ll_s C$ implies $(C \cap C') \cap B' \ll_s C$, thus *C* is a δ -supplement of $B' \cap C'$ in *M* and hence by Lemma 1.6, *C* is δ -coclosed in *M*.

Next we shall give some results about modules with the δ -CCIP, but first we need the following.

Definition 2.8 A δ -coclosure of a submodule *B* of a module *M* is a δ -coessential submodule of *B* in *M* which is also a δ -coclosed submodule of *M*.

Notice, a δ -coclosure of a submodule of a module may not always exists, also if it exists then it is not unique, for example: in *Z*-module *Z*, 2*Z* has no δ -coclosure.

Definition 2.9 A module for which every submodule has a unique δ -coclosure is called a unique δ -coclosure module or U δ CC.

Theorem 2.10 Let *M* be a singular *R*-module and $A \le M$. Then *A* is δ -coclosed in *M* if and only if *A* is coclosed in *M*.

Proof. Let $A \leq^{scc} M$. To prove $A \leq^{cc} M$, assume $B \leq A$ and $A/B \ll M/B$, then $A/B \ll_s M/B$. Since *M* is singular, so *A* is singular and hence A/B is singular. Thus, we have $B \leq_{sce} A$ in *M* and $B \leq_{cs} A$, but $A \leq^{scc} M$ these implies A = B. Conversely, let $L \leq A$ such that A/L is singular and $A/L \ll_s M/L$. Since *M* is a singular module, so M/L is also singular and hence by Lemma 1.3, $A/L \ll M/L$. But $A \leq^{cc} M$, thus A = L.

Corollary 2.11 Let *M* be a singular *R*-module and let $A \le B \le M$. Then *A* is a δ -coclosure of *B* in *M* if and only if *A* is a coclosure of *B* in *M*.

Corollary 2.12 Let *M* be a singular *R*-module. Then *M* has the δ -CCIP if and only if *M* has the CCIP.

Theorem 2.13 Let *M* be a uniform *R*-module, $N \le M$. Then *N* is δ -coclosed in *M* if and only if *N* is coclosed in *M*.

Proof. If $N \leq^{scc} M$. Suppose $A \leq N$ such that $N/A \ll M/A$, so $N/A \ll_s M/A$. By Lemma 1.1, M/A is singular, so N/A is singular, this mean A is δ -coessential of N in M and A is C-singular of N, but $N \leq^{scc} M$ thus A = N. Conversely, assume that $K \leq N$ such that N/K singular and $N/K \ll_s M/K$. Since $K \leq M$, then $K \leq_e M$, again by Lemma 1.1, M/K is singular. On the other hand, small and δ -small are coincide in a singular module, by Lemma 1.3. So, we have $N/K \ll M/K$, but $N \leq^{cc} M$ so this implies K = N.

By applying the previous Theorem, in the Z-module Z, the coclosed and the δ -coclosed submodules are coincide, and hence Z as Z-module has the δ -CCIP.

Corollary 2.14 Let *M* be a uniform *R*-module and let $L \le N \le M$. Then *L* is a δ -coclosure of *N* in *M* if and only if *L* is a coclosure of *N* in *M*.

Corollary 2.15 Let *M* be a uniform *R*-module. Then *M* has the δ -CCIP if and only if *M* has the CCIP.

Proposition 2.16 Let *M* be an *R*-module. If *M* has the δ -CCIP, then for every decomposition $M = A \oplus B$ and for all $\phi \in Hom_{\mathcal{B}}(A, B)$, $Ker\phi$ is δ -coclosed in *M*.

Proof. Assume $M = A \oplus B$ has the δ -CCIP and $\phi: A \to B$ is an *R*-homomorphism. Consider the set $S = \{a + \phi(a) : a \in A\}$. It is easy to see that $M = S \oplus B$, as follows: let $x \in M$ then x = a + b where $a \in A$, $b \in B$. Now, we can say $x = a + \phi(a) - \phi(a) + b \in S + B$, thus M = S + B. Let $p \in S \cap B$, $p = a + \phi(a)$ where $a \in A$, $p \in B$ then $a = p - \phi(a) \in A \cap B = 0$, so a = 0, implies $p = \phi(a) = 0$, thus $S \cap B = 0$ and hence $M = S \oplus B$. So each of *A* and *S* is a direct summand of *M* and hence A, S are δ -coclosed submodules of *M*. Therefore $Ker\phi = A \cap S$ is δ -coclosed in *M*.

The following Proposition and Corollary give a characterization for modules with the δ -CCIP.

Proposition 2.17 Let *M* be an *R*-module. Then *M* has the δ -CCIP if and only if for any $N \leq^{scc} M$, *N* has the δ -CCIP.

Proof. If *M* has the δ -CCIP. Suppose that K_1, K_2 are two δ -coclosed submodules of *N*, but $N \leq^{scc} M$, so by Proposition 2.4(*iii*), K_1 and K_2 are δ -coclosed in *M*, hence $K_1 \cap K_2 \leq^{scc} M$. Since $K_1 \cap K_2 \leq N \leq M$, again by Proposition 2.4(*iii*), $K_1 \cap K_2 \leq^{scc} N$. Conversely, it follows by taking N = M.

Corollary 2.18 Let *M* be an *R*-module. Then *M* has the δ -CCIP if and only if every direct summand of *M* has the δ -CCIP.

Remark 2.19 The direct sum of modules with the δ -CCIP may not have the δ -CCIP, see Example 2.2.

The next Proposition give a condition under which the direct sum of modules with the δ -CCIP is again has the δ -CCIP. Before this result, we give the following Lemma.

Lemma 2.20 Let $M = M_1 \oplus M_2$, where M_1 , M_2 be two *R*-modules with $ann_R M_1 + ann_R M_2 = R$. Then a submodule *K* of *M* is δ -coclosed if and only if, there exists δ -coclosed submodules K_1 of M_1 , and K_2 of M_2 such that $K = K_1 \oplus K_2$.

Proof. Assume *K* is δ -coclosed of $M = M_1 \oplus M_2$ with $ann_R M_1 + ann_R M_2 = R$, so by [1, Prop 4.2], we get $K = K_1 \oplus K_2$ for some $K_1 \leq M_1$ and $K_2 \leq M_2$. By Proposition 2.4, we have $K_2 \cong K/K_1 \leq {}^{scc} M/K_1$, but $M/K_1 = M_1 \oplus M_2/K_1 \oplus (0) \cong (M_1/K_1) \oplus M_2$ and $K_2 \leq M_2$, so by Proposition 2.4(*iii*), $K_2 \leq {}^{scc} M_2$. Similarly, $K_1 \leq {}^{scc} M_1$. Conversely, let $L \leq_{cs} K$ and $L \leq_{sce} K$, to prove that L = K, where $K = K_1 \oplus K_2$ and K_1, K_2 are δ -coclosed submodules of M_1, M_2

respectively. Since $L \le M$ and $ann_R M_1 + ann_R M_2 = R$, then $L = L_1 \oplus L_2$ for some $L_1 \le M_1, L_2 \le M_2$. But K/L is singular, so $\frac{K_1 \oplus K_2}{L_1 \oplus L_2} = \frac{K_1}{L_1} \oplus \frac{K_2}{L_2}$ is singular, thus each of $K_1/L_1, K_2/L_2$ is singular; that is $L_1 \le_{cs} K_1$ and $L_2 \le_{cs} K_2$. On the other hand, $K/L \ll_s M/L$, thus $\frac{K_1}{L_1} \oplus \frac{K_2}{L_2} = \frac{K_1 \oplus K_2}{L_1 \oplus L_2} \ll_s \frac{M_1 \oplus M_2}{L_1 \oplus L_2} = \frac{M_1}{L_1} \oplus \frac{M_2}{L_2}$, so by Lemma 1.2, $K_1/L_1 \ll_s M_1/L_1$ and $K_2/L_2 \ll_s M_2/L_2$; that is $L_1 \le_{sce} K_1$ in M_1 and $L_2 \le_{sce} K_2$ in M_2 , but both of K_1 and K_2 is δ -coclosed in M_1, M_2 respectively , so $L_1 = K_1$, also $L_2 = K_2$, and hence L = K. \Box

Theorem 2.21 Let $M = M_1 \oplus M_2$ be an *R*-module such that $ann_R M_1 + ann_R M_2 = R$. Then *M* has the δ -CCIP, whenever M_1 and M_2 has the δ -CCIP.

Proof. Suppose L_1, L_2 are two δ -coclosed submodules of $M = M_1 \oplus M_2$, then by Lemma 2.20, $L_1 = A_1 \oplus B_1, L_2 = A_2 \oplus B_2$ for some A_1, A_2 are δ -coclosed in M_1 and B_1, B_2 are δ -coclosed in M_2 , so by δ -CCIP of M_1 and M_2 respectively, we get $A_1 \cap A_2 \leq {}^{scc} M_1$ and $B_1 \cap B_2 \leq {}^{scc} M_2$. Thus again by Lemma 2.20, we get $(A_1 \cap A_2) \oplus (B_1 \cap B_2) \leq {}^{scc} M_1 \oplus M_2$; that is $L_1 \cap L_2 \leq {}^{scc} M$ and hence M has the δ -CCIP.

Proposition 2.22 Let *M* be a weakly δ -supplemented *R*-module which satisfying condition (t). Then *M* has the δ -CCIP if and only if M/A has the δ -CCIP, for all $A \leq^{scc} M$.

Proof. If *M* has the δ -CCIP. Assume L_1/A and L_2/A are δ -coclosed submodules of M/A. Since $A \leq^{scc} M$, so by Proposition 2.7, L_1 and L_2 are δ -coclosed submodules of *M*, but *M* has the δ -CCIP, then $L_1 \cap L_2 \leq^{scc} M$ and so by Proposition 2.4, we have $(L_1 \cap L_2)/A \leq^{scc} M/A$; that is $(L_1/A) \cap (L_2/A) \leq^{scc} M/A$. Hence M/A has the δ -CCIP, for all $A \leq^{scc} M$. Conversely, it follows by taking A = 0.

By combining Proposition 2.17, Corollary 2.18 and Proposition 2.22, we get the following result.

Proposition 2.23 Let *M* be a weakly δ -supplemented *R*-module which satisfying condition (t). Then the following statements are equivalent.

i

(*i*) *M* has the δ -CCIP.

(*ii*) For all $A \leq^{scc} M$, A has the δ -CCIP.

(*iii*) For all $A \leq^{\oplus} M$, A has the δ -CCIP.

(*iv*) For all $A \leq^{scc} M$, M/A has the δ -CCIP.

Now, we turn our attention to the behavior of modules with δ -CCIP under localization. However we need the following Lemmas.

Lemma 2.24 Let *M* be an *R*-module and let *S* be a multiplicative closed subset of *R*, then $S^{-1}(Z(M)) \subseteq Z(S^{-1}M)$. The reverse inclusion hold if, *M* is singular.

Proof. Let $\lambda \in S^{-1}(Z(M))$, so there exists $m \in Z(M)$, $s \in S$ such that $\lambda = m/s$. Since $m \in Z(M)$, $ann_R(m) \leq_e R$, but it is clear that $ann_R(m) \subseteq ann_R(m/s)$, so $ann_R(\lambda) \leq_e R$, thus $\lambda \in Z(S^{-1}M)$ and so that $S^{-1}(Z(M)) \subseteq Z(S^{-1}M)$. Conversely, if M is singular; that is Z(M) = M, then $S^{-1}M \subseteq Z(S^{-1}M)$. On the other hand, we have $Z(S^{-1}M) \subseteq S^{-1}(M)$. Thus $Z(S^{-1}M) = S^{-1}M$ and hence $S^{-1}M$ is a singular as R-module.

Lemma 2.25 Let *M* be an *R*-module, $N \le M$ and let *S* be a multiplicative closed subset of *R*. Consider $S^{-1}M$ as an *R*-module. If *N* is C-singular in *M*, then $S^{-1}N$ is C-singular in $S^{-1}M$.

Proof. As N is C-singular, M/N is singular, hence by previous Lemma, $S^{-1}(M/N)$ is singular. But $S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$, thus $S^{-1}M/S^{-1}N$ is singular and hence $S^{-1}N$ is C-singular in $S^{-1}M$.

Now, we consider the following condition (c) for an *R*-module *M*.

- For $L \le N \le M$, $S^{-1}L$ is C-singular in $S^{-1}N$ implies L is C-singular in N...(c)

Lemma 2.26 Let *M* be an *R*-module, $N \le M$ and let *S* be a multiplicative closed subset of *R* such that condition (c) hold. Then *N* is δ -coclosed in *M* as *R*-module if and only if $S^{-1}N$ is δ -coclosed in $S^{-1}M$ as *R*-module, provided $S^{-1}A = S^{-1}B$ iff A = B for all $A, B \le M$.

Proof. Let $N \leq^{scc} M$. Assume $S^{-1}L \leq_{cs} S^{-1}N \leq S^{-1}M$ and $\frac{S^{-1}N}{S^{-1}L} \ll_s \frac{S^{-1}M}{S^{-1}L}$. By condition (c), $L \leq_{cs} N$. We can prove $\frac{N}{L} \ll_s \frac{M}{L}$, to see this: let $\frac{N}{L} + \frac{W}{L} = \frac{M}{L}$, where $\frac{M/L}{W/L} \cong \frac{M}{W}$ is singular; that is $W \leq_{cs} M$. By previous Lemma, $S^{-1}W \leq_{cs} S^{-1}M$; that is $\frac{S^{-1}M}{S^{-1}W}$ singular. On the other hand, $\frac{S^{-1}N}{S^{-1}L} + \frac{S^{-1}W}{S^{-1}L} = S^{-1}(\frac{N}{L}) + S^{-1}(\frac{W}{L}) = S^{-1}(\frac{N}{L} + \frac{W}{L}) = S^{-1}(\frac{M}{L}) = \frac{S^{-1}M}{S^{-1}L}$, but $\frac{S^{-1}M/S^{-1}L}{S^{-1}W/S^{-1}L} \cong \frac{S^{-1}M}{S^{-1}W}$ is singular and $\frac{S^{-1}N}{S^{-1}L} \ll_s \frac{S^{-1}M}{S^{-1}L}$, hence $\frac{S^{-1}W}{S^{-1}L} = \frac{S^{-1}M}{S^{-1}L}$, so $S^{-1}W = S^{-1}M$ and by hypothesis W = M, thus $\frac{W}{L} = \frac{M}{L}$. Therefore $\frac{N}{L} \ll_s \frac{M}{L}$, but $N \leq^{scc} M$, so N = L and hence $S^{-1}N = S^{-1}L$. Conversely,

assume that $S^{-1}N$ is δ -coclosed in $S^{-1}M$ as R-module. Let $A \leq_{cs} N$ and $\frac{N}{A} \ll_{s} \frac{M}{A}$, thus by previous Lemma, $S^{-1}A \leq_{cs} S^{-1}N$, also we can prove $\frac{S^{-1}N}{S^{-1}A} \ll_{s} \frac{S^{-1}M}{S^{-1}A}$ as follows: let $\frac{S^{-1}W}{S^{-1}A} \leq_{cs} \frac{S^{-1}M}{S^{-1}A}$ such that $\frac{S^{-1}N}{S^{-1}A} + \frac{S^{-1}W}{S^{-1}A} = \frac{S^{-1}M}{S^{-1}A}$, thus $\frac{S^{-1}M/S^{-1}A}{S^{-1}W/S^{-1}A} \cong \frac{S^{-1}M}{S^{-1}W}$ is singular; that is $S^{-1}W \leq_{cs} S^{-1}M$ and so by condition (c), $W \leq_{cs} M$, thus $\frac{M}{W}$ is singular. Also, we have $\frac{S^{-1}N + S^{-1}W}{S^{-1}A} = \frac{S^{-1}(N+W)}{S^{-1}A} = \frac{S^{-1}M}{S^{-1}A}$, so $S^{-1}(N+W) = S^{-1}M$, and by hypothesis, N+W=M, so $\frac{N}{A} + \frac{W}{A} = \frac{N+W}{A} = \frac{M}{A}$. But, $\frac{N}{A} \ll_{s} \frac{M}{A}$ and $\frac{M/A}{W/A} = \frac{M}{W}$ is singular, so $\frac{W}{A} = \frac{M}{A}$ which implies $\frac{S^{-1}W}{S^{-1}A} = \frac{S^{-1}M}{S^{-1}A}$. Thus $\frac{S^{-1}N}{S^{-1}A} \ll_{s} \frac{S^{-1}M}{S^{-1}A}$, but $S^{-1}N \leq^{scc} S^{-1}M$, so $S^{-1}N = S^{-1}A$. By hypothesis, we get N = A.

Proposition 2.27 Let *M* be an *R*-module and *S* be a multiplicative closed subset of *R* such that condition (c) hold. Then *M* has the δ -CCIP as *R*-module if and only if $S^{-1}M$ has the δ -CCIP as *R*-module, provided $S^{-1}A = S^{-1}B$ iff A = B for all $A, B \le M$.

Proposition 2.28 Let *M* be an *R*-module such that condition (c) hold. Then *M* has the δ -CCIP as *R*-module if and only if M_P has the δ -CCIP as *R*-module, for all maximal ideal *P* of *R*.

Next, we will show that under certain class of modules, an *R*-module *M* has δ -CCIP if and only if $S^{-1}M$ (as *R*-module) has the δ -CCIP, but first we prove the following results.

Lemma 2.29 Let *M* be a prime *R*-module and let *S* be a multiplicative closed subset of *R* with $(ann_R M) \cap S = \phi$, then $S^{-1}(Z(M)) = Z(S^{-1}M)$.

Proof. By Lemma 2.24, we have $S^{-1}(Z(M)) \subseteq Z(S^{-1}M)$. Let $m/s \in Z(S^{-1}M)$, $m \neq 0$, then $ann_R(m/s) \leq_e R$. We claim that $ann_R(m) \supseteq ann_R(m/s)$, to see this: let $r \in ann_R(m/s)$ then mr/s = (m/s)r = 0/1, so there exists $t \in S$ such that mrt = 0, thus $rt \in ann_R(m) = ann_RM$. Since M is a prime R-module, either $r \in ann_RM$ or $t \in ann_RM$. If $t \in ann_RM$, so $t \in (ann_RM) \cap S$ which is a contradiction. Thus $r \in ann_RM$, hence mr = 0; that is $r \in ann_R(m)$, so $ann_R(m) \supseteq ann_R(m/s)$, then $ann_R(m) \leq_e R$, hence $m \in Z(M)$, so $m/s \in S^{-1}(Z(M))$. Thus $Z(S^{-1}M) \subseteq S^{-1}(Z(M))$, and so the result is obtained.

Corollary 2.30 Let *M* be an *R*-module, and *N* be a prime submodule of *M*. Let *S* be a multiplicative closed subset of *R*. If $(N :_R M) \cap S = \phi$ then $S^{-1}(Z(\frac{M}{N})) = Z(S^{-1}\frac{M}{N})$.

Corollary 2.31 Let *M* be an *R*-module, and *N* be a prime submodule of *M*. Let *S* be a multiplicative closed subset of *R* with $(N :_R M) \cap S = \phi$. Then $N \leq_{cs} M$ if and only if $S^{-1}N \leq_{cs} S^{-1}M$ as *R*-module, provided $S^{-1}A = S^{-1}B$ iff A = B for all $A, B \leq M$.

Proof. Let $N \leq_{cs} M$, so by Lemma 2.25, $S^{-1}N \leq_{cs} S^{-1}M$ as *R*-module. Conversely, assume that $S^{-1}N \leq_{cs} S^{-1}M$, thus $\frac{S^{-1}M}{S^{-1}N}$ is a singular module; that is $Z(S^{-1}\frac{M}{N}) = Z(\frac{S^{-1}M}{S^{-1}N}) = \frac{S^{-1}M}{S^{-1}N} = S^{-1}\frac{M}{N}$. On the other hand, by previous Corollary, $S^{-1}(Z(\frac{M}{N})) = Z(S^{-1}\frac{M}{N})$, so we get $S^{-1}(Z(\frac{M}{N})) = S^{-1}\frac{M}{N}$. Thus by hypothesis, we get $Z(\frac{M}{N}) = \frac{M}{N}$; that is $\frac{M}{N}$ singular and hence $N \leq_{cs} M$.

Now we can get our next result.

Corollary 2.32 Let *M* be a fully prime *R*-module (*i.e.* every proper submodule of *M* is prime), and let *S* be a multiplicative closed subset of *R* such that $(N:_R M) \cap S = \phi$, for all proper submodule *N* of *M*. Then *M* has the δ -CCIP as *R*-module if and only if $S^{-1}M$ has the δ -CCIP as *R*-module, provided $S^{-1}A = S^{-1}B$ iff A = B for all $A, B \leq M$.

Proof. By Corollary 2.31, the condition (c) hold and hence the result follows directly by Lemma 2.26.

Conclusions

The notion of modules with the δ -coclosed intersection property (δ -CCIP) gives many of good basic properties. As an example of main result, we proved that for an *R*-module *M*, if *M* has the δ -CCIP, for any decomposition $M = A \oplus B$ and for all $\phi \in Hom_R(A, B)$, $Ker\phi$ is δ -coclosed in *M*. Several important results about this concept are obtained in this work.

Acknowledgement. This paper comprises a portion of a PhD thesis written under the supervisor of professor Inaam M-A Hadi. The first author wishes to think them all for suggesting this problem, and also for some helpful comments throughout the development of this work.

مجلة أبحاث ميسان ، المجلد الخامس عشر ، العدد التاسع والعشرون ، حزيران سنة 2019

References

[1] Abbas M.S., On fully stable modules, Ph.D. Thesis, Univ. of Baghdad, Iraq, 1990.

[2] Athab I.A., Some generalizations of projective modules, Ph.D. Thesis, Univ. of Baghdad, Iraq, 2004.

[3] Buyukasik, E. and Lomp, C., When δ -semiperfect rings are semiperfect, Turk. J. math, 34(2009), 317-324.

[4] Goodearl K.R., Ring theory, Nonsingular rings and modules, Dekker, Newyork, 1976.

[5] Hassan S.S., Some generalizations on δ -lifting modules, M.Sc. Thesis, Univ. of Baghdad, Iraq, 2011.

[6] Kosan M.T., δ -lifting and δ -supplemented modules, Algebra colloquium, 14(1), 2007, 53-60.

[7] Talebi, Y. and Talaee, B., On F-supplemented modules, Albanian. J. math, Vol.5, 2(2011), 95-102.

[8] Zhou, Y., Generalization of prefect, semiperfect and semiregular rings, Algebra colloquium, 7(3), 2000, 305-318.