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1. Introduction

Throughout this article, all rings are associative with identity and all modules are unitary right
R-modules, unless otherwise stated. A submodule N of a module M is said to be essential (briefly
N<, M) if NnK = 0 for any nonzero submodule K of M [4]. For an R-module M, the set
Z(M) = {m € M| anng(m) =<, R} is called a singular submodule. A module M is called singular
if Z(M) =M, and it is called nonsingular if Z(M) =0 [4]. A submodule N of a module M is

called C-singular (briefly N <, M) if M/Nis a singular module. A submodule N of M is called

o -small in M (briefly N« M) if for any C-singular submodule K of M with N + K =M implies
K=M[8]. For N,K<M, N is called ¢ -coessential of K in M (briefly N < Kin M) if

K/Niss -small inM/N[6]. Clearly, every small submodule iss-small, and hence every
coessential submodule N of K in M is & -coessential of K in M. A submodule N of M is called
& -coclosed (briefly N <** M) if, whenever N/K is singular and N/K is & -small in M/K for

some K<N implies K=N [3]. In this work we introduce and investigate the concept of
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modules with the & -coclosed intersection property, where an R-module M is called module has
o -coclosed inte-rsection property if the intersection of any two ¢ -coclosed submodules of M is
again ¢ -coclosed (briefly & -CCIP). This paper is structured in two sections. In section 1, we
stated some well-known properties of C-singular, ¢ -small, & -coessential and & -coclosed
submodules, which needed in this work. In section 2, we present several general properties of
modules with & -CCIP. We prove that for an R-module M, if M has the & -CCIP, then for any
decomposition M =A®B and for all ¢ Hom,(A B), Kerg is & -coclosed in M. We will

denotes anng (M) = {r € R| rm = 0 forall m(= 0) € M}

Before anything, we will list some known properties of C-singular, & -small, & -coessential and
o -coclosed submodules respectively.

Lemma 1.1 [4] Let M be an R-module and N <M . If N <, M then N <, M. The converse is

—cCs

true, whenever M is nonsingular.

Lemma 1.2 [8] Let M be an R-module. Then the following hold.

(@) Let K < N and L are submodules of a module M.
(i) If KN, then K« M.
(i) If N&s M, then K« M.
(iii) N«s M ifand only if K&sM and N/K «s M/K.

(iv) N+L«sM ifand only if N&«sM and L«<sM.

(b) If K&sM and ¢: M — N is a homomorphism, then ¢(K)<<sN .

) If K,<M, <M for (i=12),and M =M, ®M,. Then K, ®K,Ks M, ®M, if and only if
K,&s M; and K, &s M,.

Lemma 1.3 [5] Let M be a uniform (or singular) R-module and N < M . Then N«M if and only
iIf NsM.

Lemma 1.4 [5] Let M, N be an R-modules and let A<B<C <M. Then

(i) B<,, C inM ifandonlyif B/A<_ C/Ain M/A.

—sce —sce

(i) A<, CinM ifandonlyif A< B and B C inM.

—sce —sce —sce

(iii) Let @: M — N be an epimorphism. If A<__ B in M then ¢(A) <. @(B) inN.
go ¢ sce q)

—sce
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Lemma 1.5 [5] Let M be an R-module, and let A<__. B in M. Then

—sce

(i) IFC<_DinM,then A+C<

—sce —sce

B+ D in M.

(i) If X <M, then A+ X <__ B+ X in M. The converse is true if, X<<sM.

—sce

(iiii) If X<<sM , then A<__ B+ X in M.

—sce

A module M is called & -supplemented if, for every submodule L of M, there exists a submodule
K of M such that M =L+ K and LK «; K. In this case K is called & -supplement of L in M
[6]. A module M is called weakly & -supplemented if, for every submodule L of M, there exists
a submodule K of M such that M =L+ K and LnK «s M . In this case K is called a weak
o -supplement of L in M [3].

Lemma 1.6 [3] For an R-module M and a submodule N of M. Consider the following statements.
(i) Nisa o -supplement submodule in M.
(if) N is a & -coclosed submodule in M.
(iii) For all X <N and X<« M implies X< N.

Then (i) = (ii) = (iii) . If N has a weak & -supplement in M, then (i) through (iii) are equivalent.

2. Modules with the & -coclosed Intersection Property

We begin by the following Proposition.

Proposition 2.1 Every direct summand of a module is & -coclosed.

Proof. Let M be an R-module and let N be a direct summand of M. For some K<M,
M =N@K. To prove that N is a & -coclosed submodule, let X <N with N/X singular and
N/X «sM/X , also M/X =(N@®K)/X =N/X + (K +X)/X , so by 3 isomorphism theorem,
(M/X)/(K+X)/X=zM/(K+X). We claim that M/(K+X)is singular. For any
meM ,m=n+k for some neN,keK. Now, let reanny,(n+X),nr+X =X that is
nreX, but
M+K+X)r=mr+K+X =nr+kr+K+ X =K+ X ,soann,(n+ X) cann,(m+ K + X) .Since

N/X is singular,ann,(n+ X) <, R, so anny(m+K+X) <, R, hence M/(K+ X) is singular.
But N/X «sM/X, so M/X =(K+X)/X, then K+X =M =K+N. To prove that X =N,
assume xeNcM, x=a+b for some aeK, be XN then x—b=aeNNK =0, thus
Xx—b=0, x=be X,then N < X and hence N=X. a]
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Now, we present the following example.

Example 2.2 Let M =Z @®Z, as Z-module, A=(1,0)Z and B =(1,1)Z are direct summands of

M, so A and B are o-coclosed submodules of M with  ANB=2Z®(0).
TakeL =4z ®(0),(ANB)/L=2Z® (())/42 @ (0)is singular, because for teann,(m+L), where

me AN B, then mte L =4z @ (0) which implies that t € 2Z and so that ann,(m+L)=2Z <_ Z,
hence (AnB)/L is singular. On the other hand, (AnB)/L is §-small in M/L but AnB=L,
thus An B isnot & -coclosed in M.

This example leads us to introduce the following.

Definition 2.3 A module M is said to have the & -coclosed intersection property (briefly & -CCIP)
if, the intersection of any two ¢ -coclosed submodules of M is again & -coclosed.

The following Proposition, gives some properties of & -coclosed submodules.

Proposition 2.4 Let M be an R-module and let K < L <M .Then the following assertions hold.
(i) If L< M, then L/K < M/K..
(i) If L<* M and N« M, then L+N/N <** M/N.

(iii) If K <**° M, then K <*¢ L. The converse hold whenever L <** M .

Proof. (i) Let N/K <, L/K inM/Kand (L/K)/(N/K) which is isomorphic to L/N is singular,

soby Lemmal.4, N<_ L,also N < L whichimplies N =L and hence N/K =L/K.

—sce —Cs

(ii) Suppose that X/N <. (L+N)/N in M/N and (L+N/N)/(X/N)=L+N/X is singular,

—sce

so by Lemma 14,X<_L+N, also (L+N)/X is singular. Clearly, X=(LnX)+N,

—sce

thus(LN X)+N <, L+N, but N&s M, so by Lemma 1.5, (Ln X) <, L. Moreover, we have
L/(L~ X)) is singular, to prove this: for all (I +n)+ X e L+ N/X , we have anng[(I +n)+ X]<, R,
so ann,(I+X)<, R. But ann,(I+ X)cann,(I+LNX), hence ann,(I+LnX)<, R for all

leL;thatis L/LMX singular. But L<**M,s0 LnX =L, thus X=(LNnX)+N=L+N.
Therefore X/N =(L+N)/N.
(iii) Assume that X <, K in L and X <, K, so K/X «L/X and K/X is singular. Thus

—sce

K/X «sM/Xand K/X is singular; that is X <, Kin M and X <, K. But K<** M, so
K =X and hence K <*¢ L. Conversely, let L <** M . Assume that K/X «sM/X and K/X is
singular. Since X <L, then by (i), L/X <** M/X and hence by Lemma 1.6, K/X «sL/X , but

K<L, thus K=X. o
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Lemma 2.5 Let M and N be R-modules with ¢: M — N be an R-epimorphism. If M is weakly
o -supplemented, then N also is weakly & -supplemented .

Proof. Let X <N, then ¢ (X)<M. Since M is weakly & -supplemented, so there exists
B<Msuch that ¢ (X)+B=Mand ¢ '(X)"B«s M, then X +¢(B)=N and X n¢(B) s
N, this proving that N is weakly & -supplemented. O

Corollary 2.6 If M is a weakly & -supplemented module and B<M , then M/B is also weakly
o -supplemented.

Proof. It follow directly by taking the natural epimorphism z:M — M/B. O

Note: If M and M are two R-modules, A<M and B < M ‘such that A«<s M with A= B then it is
not necessary that B«sM , as example: consider the Z-modules Z , Q and let A=Z<Q,

B=2Z<Z.Itis clear that A=Z is a small submodule of Q, so it is ¢ -small in Q with A= B,
but B=2Z isnot §-small in Z.

However, we consider the following condition (t) for R-modules M, M ":

-1f A<M and B <M such that A<s M with A=B implies B&s M ...(t)

Proposition 2.7 Let M be a weakly & -supplemented R-module which satisfying condition (t), and
B <C are submodules of M. If C/B<** M/B and B<** M, then C<** M.

Proof. Since M is a weakly & -supplemented module, then by Corollary 2.6, M /B is also weakly
& -supplemented. SinceC/B <** M/B and B<** M, then by Lemma 1.6, C/B and B are &5 -
supplement submodules in M/B and M respectively. We have to show that C is a & -
supplement in M. Suppose C/B isa & -supplement of C'/B in M/B and B is a & -supplement of
B in M. Then M/B=C/B+C'/B and C/BNC/B=(CC)/B«sC/B, also M =B+B'such
that BB «;sB. Clearly, BN B <« C. We claim that C is a & -supplement of B'~C in M. To
prove this assertion, notice that M =(C~C)+B and M =C+C , so by [2, Lemma 1.1.6],
M=C+(B'nC).Now,C=Cn(B+B)=B+(CnB) and CNC/B<«C/B,but M=B+B,

so by [7, Lemma 3.15], (€nC )OB = €nc . By condition (t), (€nC )OB K ¢ - but
BNB B BB BNB

BB «s C implies (CNC)NB'«; C, thus C is a & -supplement of B nC " in M and hence

by Lemma 1.6, C is ¢ -coclosed in M. o

Next we shall give some results about modules with the &-CCIP, but first we need the
following.
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Definition 2.8 A & -coclosure of a submodule B of a module M is a & -coessential submodule of
B in M which is also a & -coclosed submodule of M.

Notice, a ¢ -coclosure of a submodule of a module may not always exists, also if it exists then
it is not unique, for example: in Z-module Z, 2Z has no & -coclosure.

Definition 2.9 A module for which every submodule has a unique & -coclosure is called a unique
o -coclosure module or U 6 CC.

Theorem 2.10 Let M be a singular R-module and A<M . Then Ais ¢ -coclosed in M if and only
if A'is coclosed in M.

Proof. Let A<** M . To prove A<* M, assume B<A and A/B<KM/B, then A/B«;M/B.
Since M is singular, so A is singular and hence A/Bis singular. Thus, we have B<., A in M and
B<, A, but A< M these implies A=B. Conversely, let L <A such that A/Lis singular and

A/L «s M/L. Since M is a singular module, so M/L is also singular and hence by Lemma 1.3,
A/L&LKM/L.But A<* M, thus A=L. D

Corollary 2.11 Let M be a singular R-module and let A<B<M. Then Ais a ¢ -coclosure of B
in M if and only if A is a coclosure of B in M.

Corollary 2.12 Let M be a singular R-module. Then M has the 6 -CCIP if and only if M has the
CCIP.

Theorem 2.13 Let M be a uniform R-module, N <M . Then N is ¢ -coclosed in M if and only if
N is coclosed in M.

Proof. If N <** M. Suppose A<N such that N/A«<M/A,so N/AKs M/A. By Lemma 1.1,
M/A is singular, so N/A is singular, this mean A is & -coessential of N in M and A is C-singular
of N, but N <** M thus A=N. Conversely, assume that K <N such that N/K singular and
N/K «s M/K. Since K<M, then K <, M, again by Lemma 1.1, M/K is singular. On the
other hand, small and ¢ -small are coincide in a singular module, by Lemma 1.3. So, we have
N/K «<M/K,but N<* M so this implies K=N. O

By applying the previous Theorem, in the Z-module Z, the coclosed and the & -coclosed
submodules are coincide, and hence Z as Z-module has the 6 -CCIP.

Corollary 2.14 Let M be a uniform R-module and let L< N <M. Then L is a & -coclosure of N
in M ifand only if L isa coclosure of N in M.
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Corollary 2.15 Let M be a uniform R-module. Then M has the & -CCIP if and only if M has the
CCIP.

Proposition 2.16 Let M be an R-module. If M has the & -CCIP, then for every decomposition
M = A® B and for all ¢ € Hom, (A, B), Kerg is & -coclosed in M.

Proof. Assume M = A®@B has the 6 -CCIP and ¢: A— B is an R-homomorphism. Consider the
set S={a+¢(a):ae A}. It is easy to see that M =S ® B, as follows: let xeM then x=a+b
where ae A, beB. Now, we can say x=a+¢(a)—¢@(@)+beS+B, thus M =S+B. Let
peSNB, p=a+¢(a) where ac A, peB then a=p—-¢p(@)e AnB=0, so a=0, implies
p=¢(@)=0, thus SNB=0 and hence M =S®B. So each of A and S is a direct summand
of M and hence A,S are ¢ -coclosed submodules of M. Therefore Ker¢g=AnNS is & -coclosed
in M. O

The following Proposition and Corollary give a characterization for modules with the & -CCIP.

Proposition 2.17 Let M be an R-module. Then M has the 5 -CCIP if and only if for any N <** M,
N has the 5 -CCIP.

Proof. If M has the ¢ -CCIP. Suppose that K, K, are two & -coclosed submodules of N, but
N <** M, so by Proposition 2.4 (iii), K, and K, are & -coclosed in M, hence K, "K, <** M.

Since K, "K, <N <M, again by Proposition 2.4 (iii), K, nK, <** N. Conversely, it follows by
taking N=M . o

Corollary 2.18 Let M be an R-module. Then M has the & -CCIP if and only if every direct
summand of M has the & -CCIP.

Remark 2.19 The direct sum of modules with the &-CCIP may not have thes -CCIP, see
Example 2.2.

The next Proposition give a condition under which the direct sum of modules with the & -CCIP
is again has the ¢ -CCIP. Before this result, we give the following Lemma.

Lemma 2.20 Let M =M, @M, , where M,, M, be two R-modules with ann;M, +ann;M, =R.
Then a submodule K of M is ¢ -coclosed if and only if, there exists ¢ -coclosed submodules K; of
M,,and K, of M, suchthat K =K, ®K,.

Proof. Assume K is & -coclosed of M =M, @M, with ann;M, +anngM, =R, so by [1, Prop
4.2], we get K=K, ®K, for some K, <M, and K,<M,. By Proposition 2.4, we have
K, =K/K, < M/K,, but M/K, =M, ®M, /K, ®(0)=(M,/K)®M, and K,<M,, so by
Proposition 2.4 (iii), K, <** M,. Similarly, K, <** M,. Conversely, let L<, K and L<, K, to
prove that L=K, where K=K, ®K, and K, K, are ¢ -coclosed submodules of M,,M,
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respectively. Since L<M and ann;M,+ann;M,=R, then L=L &L, for some

K.®K, _ ﬁ@& is singular, thus each of

LeL, L L

K,/L ,K,/L, issingular; thatis L, < K, and L, <. K,. On the other hand, K/L<«s M/L,

thus K@ Kz = K@K, <<5M1@'v|2 :ﬂ@&, so by Lemma 1.2, K,/L, «s M,/L, and
L LeL ~LeL L L

K,/L, &sM,/L,; thatis L <., K, in M, and L, <, K, in M,, but both of K, and K, is &-

—sce

L, <M, L, <M,. But K/L is singular ,s0

coclosed in M,,M, respectively , so L =K, , also L,=K,, and hence L=K.

O
Theorem 2.21 LetM =M, @M, be an R-module such that ann .M, +ann,M, =R. Then M has
the ¢ -CCIP, whenever M, and M, has the 6 -CCIP.

Proof. Suppose L, L, are two & -coclosed submodules of M =M, ©®M,, then by Lemma 2.20,
L=A®B, L,=A ®B, for some A,A, are ¢ -coclosed in M, and B,,B, are & -coclosed in
M,, so by 6-CCIP of M, and M, respectively, we get A NA, <M, and B, nB, <** M,.
Thus again by Lemma 2.20, we get (A NA)® (B,nB,)<** M, ®M,; thatis L nL, <M
and hence M has the & -CCIP. D

Proposition 2.22 Let M be a weakly & -supplemented R-module which satisfying condition (t).
Then M has the & -CCIP if and only if M/A has the & -CCIP, for all A<M

Proof. If M has the 5-CCIP. Assume L,/A and L,/A are &-coclosed submodules of M/A.
Since A<** M, so by Proposition 2.7, L, and L, are & -coclosed submodules of M, but M has
the 6 -CCIP, thenL, nL, <** M and so by Proposition 2.4, we have (L, nL,)/A<* M/A; that
is (L/A)N(L,/A) < M/A. Hence M/A has the §-CCIP, for all A<** M. Conversely, it
follows by taking A=0. o

By combining Proposition 2.17, Corollary 2.18 and Proposition 2.22, we get the following
result.

Proposition 2.23 Let M be a weakly & -supplemented R-module which satisfying condition (t).
Then the following statements are equivalent.

(i) M has the 6 -CCIP.
(ii) For all A<** M, A has the 5 -CCIP.
(iii) For all A<® M, A has the & -CCIP.

(iv) Forall A<** M, M/A has the 5 -CCIP.
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Now, we turn our attention to the behavior of modules with & -CCIP under localization.
However we need the following Lemmas.

Lemma 2.24 Let M be an R-module and let S be a multiplicative closed subset of R, then
S™HZ(M)) < Z(S™M). The reverse inclusion hold if, M is singular.

Proof. Let 1€ S™(Z(M)), so there exists me Z(M), s e S such that A =m/s. Since me Z(M),
ann,(m) <, R, but it is clear that ann,(m) < ann,(m/s), so ann,(1) <, R, thus A€ Z(S™'M)
and so that S™(Z(M))< Z(S*M).Conversely, if M is singular; that is Z(M)=M, then
S™™ < Z(S™M). On the other hand, we have Z(S™*M)cS™*(M). Thus Z(S*M)=S"'M and
hence S™M is a singular as R-module. n

Lemma 2.25 LetM be an R-module, N <M and let S be a multiplicative closed subset of R.
Consider S™M as an R-module. If N is C-singular in M, then S™'N is C-singular in S™M .

Proof. As N is C-singular, M/N is singular, hence by previous Lemma, S™(M/N) is singular.
But S*(M/N)=S*M/S™N, thus S*M/SN s singular and hence S'N is C-singular in
SM. |

Now, we consider the following condition (c) for an R-module M.
-For L<N <M, S™'L is C-singularin S™N implies L is C-singularin N...(c)

Lemma 2.26 LetM be an R-module, N <M and let S be a multiplicative closed subset of R
such that condition (c) hold. Then N is & -coclosed in M as R-module if and only if SN is
5 -coclosed inS™M as R-module, provided S*A=S"B iff A=B forall AB<M .

-1 1
Proof. Let N <**M. Assume S'L< S'N<S'M and SS*T Ks Ssll\lil . By condition (c),
L <. N.We can prove NeeM oseethis: let N W oM \vhere M/L M jg singular; that
L L L L L W/L-W

is W<, M. By previous Lemma, S™W < S*M; that is iix singular. On the other hand,
SN .S W M, S'M S™™/STL _SM .

=S- +5- S CATTAS = but =~ is singular
ST s ( ) ( ) ( ) (L) S™L S™W/SL T SW J

-1 . .
and S~ <<S S _1M , hence S W _s'M , SO S™W =S"'M and by hypothesis W =M, thus
s S7L S'L sTL

w_Mm

S=T Therefore %«s % but N<**M, so N=L and hence S™N =S"L. Conversely,
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assume that SN is &-coclosed in S™*M as R-module. Let A<_N and %«S % thus

—Cs

-1 -1
by previous Lemma, S'A<_ SN, also we can prove 2& K5 SS‘ll\,: as follows: let
S™w S'M SN SW SM S*™/STA _SM . .

< such that + = , thus =~ is singular; that
S*'A ® STA S'TA ST'A STA S™W/SA ~ SWw J

is S™W<_S'™M and so by condition (c), W <_ M, thus % is singular. Also, we have

—Cs —Cs

-1 - -1 -1
STN +S7W _S (N+W) _S°M ,$0 SH(N+W)=S"M, and by hypothesis, N +W =M, so

SA s'A S7A

N W N+W M N M M/A M . . w M
—+—= =—. But, — <, — and —-—=— s singular, so — =— which implies
A A A A A A W/A W A A

- -1 -1 -1
SW _S™™ ris SN S it SINS™S M, 50 SN =SA. By hypothesis, we
STA STA STA STA
get N=A. a]

Proposition 2.27 Let M be an R-module and S be a multiplicative closed subset of R such that
condition (c) hold. Then M has the & -CCIP as R-module if and only if S™M has the &-CCIP
as R-module, provided S"A=S"B iff A=B forall AB<M.

Proposition 2.28 Let M be an R-module such that condition (c) hold. Then M has the & -CCIP as
R-module if and only if M, has the ¢ -CCIP as R-module, for all maximal ideal P of R.

Next, we will show that under certain class of modules, an R-module M has ¢ -CCIP if and
only if S™*M (as R-module) has the & -CCIP, but first we prove the following results.

Lemma 2.29 Let M be a prime R-module and let S be a multiplicative closed subset of R with
(@ann,M)NS =¢, then S™(Z(M)) =Z(S'M).

Proof. By Lemma 2.24, we have S™(Z(M))cZ(S™M). Let m/seZ(S™M), m=0, then
ann,(m/s) <, R. We claim that ann,(m)>ann,(m/s), to see this: let r eanny(m/s) then
mr/s = (m/s)r =0/1, so there exists teS such that mrt=0, thus rt e ann,(m)=ann,M . Since
M is a prime R-module, either r eann;M or teann,M . If teann,M, so t e (ann,M) NS which
is a contradiction. Thus r eann;M , hence mr =0; that is r € ann,(m), so ann,(m) o ann,(m/s),
then ann,(m) <, R, hence me Z(M), so m/seS*(Z(M)).Thus Z(S™M) = S™(Z(M)), and so
the result is obtained. 0



2019 et Gl snirsdr « (8 st 19 ontbid| il ¢ ot a0 b Ml ¢ lonind il udne

Corollary 2.30 Let M be an R-module, and N be a prime submodule of M. Let S be a multiplicative
closed subset of R. If (N :; M) S =¢ then sl(z(%)) =Z7(S™ %) :

Corollary 2.31 Let M be an R-module, and N be a prime submodule of M. Let S be a multiplicative
closed subset of R with (N:; M)nS=¢. Then N< M if and only if S™N<_ S'M as

—cCs —Cs

R-module, provided S"A=S"B iff A=B forall AB<M.

Proof. Let N < M, so by Lemma 2.25, S™'N <_ S™*M as R-module. Conversely, assume that

-1 -1 -1
S'N <, S™'M ,thus % is a singular module; that is Z(S‘lM =Z(S M) S M_gaM

S'N’ SN C N
On the other hand, by previous Corollary, sl(z(%)) =7Z(s™ %) ,S0 we get 81(2(%)) = Sl%.

—Cs

Thus by hypothesis, we get Z(%) = %; that is % singular and hence N<_ M. n!

Now we can get our next result.

Corollary 2.32 Let M be a fully prime R-module (i.e. every proper submodule of M is prime),
and let S be a multiplicative closed subset of R such that (N:; M)nS =¢, for all proper
submodule N of M. Then M has the & -CCIP as R-module if and only if S™M has the & -CCIP as
R-module, provided STA=S"'B iff A=B forall AB<M.

Proof. By Corollary 2.31, the condition (c) hold and hence the result follows directly by Lemma
2.26. O

Conclusions

The notion of modules with the & -coclosed intersection property (o -CCIP) gives many of good
basic properties. As an example of main result, we proved that for an R-module M, if M has the
6 -CCIP, for any decomposition M = A® B and for all ¢ € Hom, (A, B), Kerg is & -coclosed in
M. Several important results about this concept are obtained in this work.
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