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Abstract: In recent years, many nature-inspired metaheuristic optimization algorithms have been 
proposed in an effort to develop efficient and robust algorithms. The drawback in most of them is the 
large number of simulations required to obtain good designs. To reduce the number of structural 
analyses to reach the best design, a new two-phase algorithm is proposed and evaluated. This hybrid 
algorithm is based on the well-known Harmony Search (HS) algorithm and recently developed 
Colliding Bodied Optimization (CBO). HS analyzes and improves one design in every iteration 
whereas CBO generates and analyzes a new population of designs in every iteration. Based on the 
observed behavior of these two algorithms, a Hybrid Harmony Search - Colliding Bodies Optimization 
(HHC) is proposed. The first phase of HHC uses the Improved Harmony Search (IHS) algorithm. A 
new design domain reduction technique is also incorporated in IHS that dramatically reduces the 
number of possible combinations of discrete variables. This improves the performance of the IHS 
algorithm. The second phase uses the Enhanced Colliding Bodies Optimization (ECBO). ECBO 
receives final designs from the first phase to enhance them further. This makes the second phase need 
fewer iterations in comparison with the ECBO alone. The performance of the proposed algorithms is 
evaluated using some benchmark discrete structural optimization problems, although the method is 
applicable to continuous-variable problems as well. The results show HHC with design domain 
reduction to be quite effective, robust, and needs a smaller number of structural analyses to solve 
optimization problems in comparison with IHS, ECBO, and some other metaheuristic optimization 
algorithms. HHC with design domain reduction is shown to be quite robust in the sense that different 
runs for a problem obtain the same final design. In comparison with HIS and ECBO, HHCD reduces 
the number of structural analyses to find the best design to less than half. This is an important feature 
that leads to better confidence in the final solution from a single run of the algorithm for a problem. 

Keywords:  Hybrid metaheuristic algorithm; Global optimization; Discrete structural optimization; 

Harmony Search; Colliding Bodies Optimization. 

 

1. Introduction  
Calculus-based optimization algorithms were developed more than 50 years ago and a vast amount of 

literature is available on the subject. Linear programming (LP), nonlinear programming (NLP), and 

dynamic programming (DP) methods need gradient information to improve the solution estimate (to find 

a search direction). These methods search for the optimum point in a neighborhood of the current 

estimate. In comparison with metaheuristic algorithms, these methods converge much faster and can find 

higher-accuracy solutions. 

Gradient-based methods are most appropriate for continuous variables and continuous functions. 

Many engineering problems have non-smooth functions in their formulation. For example, designing 

steel frames according to American Institute of Steel Construction codes' requirements imposes some 

non-differentiable equations (empirical equations based on experimental studies). As a result, gradient-

based optimization methods cannot be used to solve such problems. On the other hand, stochastic, 

metaheuristic, or nature-inspired algorithms use only simulation results to reach the final solution, such 

as the well-known Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and many others [1]. The search is not near the current point and the discrete 

variables and non-differentiable functions can be treated routinely. They use an organized random search 

in the entire design space instead of a gradient-based search in the neighborhood of the current point. 

Therefore, they are likely to converge to a global optimum point rather than a local optimum. Different 
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runs for the same problem can take different paths to the final solution or even a different solution. The 

methods are suitable for both continuous and discrete variables and with one or more objective functions.  

Just like gradient-based algorithms, stochastic algorithms have drawbacks. They require considerable 

computation time to obtain a reasonable solution. The computation time depends on the number of the 

design variables and the range for each design variable; a larger design domain needs more iterations and 

thus more structural analyses. Increasing the number of iterations could be a good way to find a better 

design but there is no guarantee that a global optimum design will be found. Therefore, the best way is to 

run the algorithm more than once and choose the best solution from different runs. This, however, means 

that more computational effort is needed to solve a problem. A good metaheuristic algorithm has the 

ability to skip local optima, needs less number of simulations to find the best design, is applicable to 

different types of problems, and can obtain higher accuracy solutions [2].  

In an effort to reduce the number of structural analyses to reach the final design, a Hybrid Harmony 

Search - Colliding Bodies Optimization (HHC) algorithm is proposed and evaluated in this study. This 

proposal is based on the following observations about the behavior of two algorithms while solving some 

structural design problems: (1) Improved version of the harmony search algorithm (IHS) [3] makes rapid 

improvements toward the final design in the initial iterations and then its progress slows down once it is 

in a neighborhood of the best design, and (2) The enhanced version of the colliding bodies optimization 

(ECBO) makes steady improvement towards the final design requiring more structural analyses to reach 

a neighborhood of the final design compared to IHS. Therefore, the basic idea to be explored for the 

proposed hybrid algorithm is to determine if a combination of the two algorithms can reduce the number 

of structural analyses to reach the final design. That is, since IHS algorithm can reach the neighborhood 

of the final design more rapidly, it will be used in phase one and its iterations will be terminated once the 

progress towards the final design slows down; in phase two, the improved designs from IHS will be 

passed on to the ECBO as its initial population (instead of random designs generated from the entire 

design domain) to improve the best design further. This may lead to fewer structural analyses to reach the 

final design. In addition, a new design domain reduction technique based on statistically analyzing some 

designs is added to IHS to increase the possibility of rapidly finding better designs. 

A new stopping criterion is also introduced in addition to a limit on the number of iterations for 

terminating phase one iterations. That is, when the algorithm is not able to find a better design for a 

certain number of iterations, it is terminated.  

A major motivation for this work is to investigate procedures that can reduce the number of structural 

analyses to reach the final designs for the class of structural optimization problems that cannot be solved 

using gradient-based algorithms. This becomes critically important while solving more complex 

structural optimization applications, such as nonlinear static response problems, nonlinear dynamic 

response problems and multidisciplinary problems. Each simulation of such problems can take enormous 

computational effort making meta-heuristic methods very time-consuming.  

Some benchmark discrete truss optimization problems are solved using the proposed algorithm. These 

well-known examples are solved previously in the literature using different metaheuristic algorithms. The 

results are discussed and compared with the available results in the literature to study the performance of 

the proposed algorithm.  

2. Formulation of Discrete Structural Optimization Problems  

In many practical design cases, design variables are discrete because members must be selected from 

the available sizes in a catalog. The formulation of the discrete design variables optimization problem is 

slightly different from continuous design variable optimization. In general, the problem can be stated as: 

where X is the vector of design variables with nvar unknowns, Dj is a set of discrete values for the 

jth design variable,  f(X) is a cost function (in this study, f(X) is the total weight of the structure), and 

gk(X) is a constraint function. 

One way of treating constraints in metaheuristic algorithms is to combine constraints with the cost 

function to define a merit function (also called the penalty function) that is then minimized: 

 𝐹𝑖𝑛𝑑   𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛𝑣𝑎𝑟];     𝑥𝑗 ∈ 𝐷𝑗;   𝑗 = 1,2, … . , 𝑛𝑣𝑎𝑟  (1) 

 to minimize    𝑓(𝑿)  (2) 

 subject to   𝑔𝑘(𝑿) ≤ 0;    𝑘 = 1,2, … , 𝑝   (3) 
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 𝐹(𝑿) = 𝑓(𝑿)[1 + 𝜓𝐺(𝑿)]𝜉    (4) 

 
𝐺(𝑿) = ∑ 𝑚𝑎𝑥 (0, 𝑔𝑘(𝑿))

𝑝

𝑘=1

 (5) 

where G(X) is a constraint violation function, ψ ≥ 1 is exploration penalty coefficient (ψ = 1 unless 

another value is mentioned), ξ > 1  is penalty function exponent (in this study, ξ = 2 ), and 

max (0, gk(X)) ≥ 0 is the violation value of the kth inequality constraint. The present problem has just 

inequality constraints. However, if equality constraints are present in the problem formulation, they are 

treated by including their violations in Eq. (5). 

3. Metaheuristic Optimization Algorithms 

Over the years, many metaheuristic optimization algorithms have been explored. More recent 

techniques are based on observations about some natural phenomena, such as survival of the fittest and 

genetic inheritance in Genetic Algorithms (GA), which is inspired by the basic mechanism of natural 

evolution developed by Goldberg and Holland [4]; Simulated Annealing (SA) proposed by Kirkpatrick et 

al. [5]; Particle Swarm Optimization (PSO) proposed by Kennedy and Eberhart [6]; Ant Colony 

Optimization (ACO) introduced by Dorigo et al. [7]; Harmony Search (HS) algorithm invented by Geem 

et al. [8]; Big Bang–Big Crunch algorithm (BB–BC) introduced by Erol and Eksin [9]; Colliding Bodies 

Optimization (CBO) proposed by Kaveh and Mahdavi [10]; and Ray Optimization (RO), developed by 

Kaveh and Khayat [11].  

In this study, HS algorithm and its improved version and CBO and its enhanced version are 

summarized since the proposed hybrid algorithm HHC uses these procedures.  

3.1 Harmony Search Algorithm  

Geem, Kim, and Longanathan [8] presented the HS algorithm based on the music improvisation 

process of jazz musicians. The following five steps describe the HS algorithm: 

Step 1: Parameter setting 

The algorithm initially generates a set of random designs from the design domain. Then in every 

iteration, a new design is generated and analyzed. If this design is better than the current population's 

worst design, it replaces that design; otherwise, another design is generated. The process is continued 

until a limit on the number of iterations is reached. 

HS has four parameters that need to be initialized before starting the algorithm. There are no general 

guidelines for their selection; they are selected depending on the problem [12]. Thus, the best way is to 

try different values to find the best combination for an application. The parameters are:  

Harmony memory size (HMS). It is the initial number of candidate solutions selected randomly from 

the design domain. For example, if HMS is 10, the algorithm starts by selecting 10 designs and for every 

design evaluates the merit function F if the problem is constrained or the objective function f if the 

problem is unconstrained. This information is saved in a matrix called harmony memory (HM).  

Harmony memory consideration ratio (HMCR): Its value ranges between 0 and 1. It is the probability 

of selecting design variables from the current HM to generate a new design. Variables selected from the 

current HM may go through further adjustment depending on the pitch adjustment rate.   

 Pitch adjusting rate (PAR): Its value ranges between 0 and 1 and it is the probability of mutation of 

the design variable selected from HM to a neighboring value. 

Maximum improvisations (MaxIerP1): It is a limit on the number of iterations for HS.  

Step 2: Initialization 

The HS starts with HMS random designs to populate the harmony memory matrix HM as: 
 

HM= [
𝑥1

1 𝑥1
2    ⋯ 𝑥1

𝑛𝑣𝑎𝑟

⋮ ⋱ ⋮
𝑥𝐻𝑀𝑆

1 𝑥HMS
2 ⋯ 𝑥𝐻𝑀𝑆

𝑛𝑣𝑎𝑟
]      (6) 

where nvar is the number of design variables. Thus each row of this matrix represents a design point 

and each column is associated with a design variable. 
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Step 3: Harmony improvisation 

A new design point is improvised where each design variable is selected from either the current 

population of designs in the matrix HM or from its possible range of values. These selections are based 

on harmony memory consideration, pitch adjustment, and random numbers.  

Using harmony memory consideration parameter HMCR, the new value for the jth design variable is 

chosen as xi
j
 from either the jth column of HM or from the allowable values for this design variable 

[12]. For each design variable j (j =  1 to nvar), the row index i is selected randomly as follows: 

 𝑥𝑖
𝑗

 ∈ {𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝐻𝑀𝑆

𝑗
};     𝑖𝑓 𝑟𝑛𝐻𝑀𝐶𝑅

𝑗
 ≤  𝐻𝑀𝐶𝑅 (7) 

 𝑥𝑖
𝑗

 ∈ 𝐷𝑗 ;      𝑖𝑓 𝑟𝑛𝐻𝑀𝐶𝑅
𝑗

 > 𝐻𝑀𝐶𝑅         (8) 

where rnHMCR
j

 is a random number uniformly distributed over the interval [0,1] and Dj is the allowable 

set of values for the jth design variable.  

Every design variable selected from harmony memory is examined further to determine whether it 

should be pitch-adjusted or not. The parameter PAR is used for this purpose as follows: 
 

Pitch adjusting decision for 𝑥𝑖
𝑗

 {
yes   if    𝑟𝑛𝑃𝐴𝑅

𝑗
 ≤ 𝑃𝐴𝑅

No    if   𝑟𝑛𝑃𝐴𝑅
𝑗

 > 𝑃𝐴𝑅
                     (9) 

where  rnPAR
j

 is a random number uniformly distributed over the interval [0,1]. If the pitch adjustment 

decision is "yes" xi
j
 is replaced as follows:  

 𝑥𝑖,𝑛𝑒𝑤
𝑗

=  𝑥𝑖
𝑗

 + 1 𝑖𝑓 𝑃𝐴𝑅𝑟𝑎𝑛𝑑
𝑗

 < 0.5 

𝑥𝑖,𝑛𝑒𝑤
𝑗

=  𝑥𝑖
𝑗

− 1 𝑖𝑓 𝑃𝐴𝑅𝑟𝑎𝑛𝑑
𝑗

 ≥ 0.5                     
(10) 

where PARrand
j

 is a random number uniformly distributed over the interval [0,1], and +1 and -1 mean 

moving to the next higher or lower allowable value for this variable [13].  

Step 4: Update the harmony memory: 

The new design from step 3 is evaluated. If it is better than the worst design in HM, the new design 

replaces the worst design in HM; otherwise, a new design is improvised. 

Step 5: Termination criteria 

If the limit on the number of iterations is reached, terminate the algorithm; otherwise, go to step 3.  

3.2 Improved Harmony Search Algorithm (IHS)  

The concept of IHS is the same as HS (the five steps in Section 3.1). However, the standard HS 

algorithm uses fixed values of HMCR and PAR. The main drawback of the standard HS algorithm is 

that it needs a large number of iterations to find an acceptable solution [3]. 

In IHS, HMCR and PAR are adjusted with every iteration using Eqs. (11) and (12) to improve the 

performance of the HS algorithm by eliminating its drawbacks [14].  
 

𝐻𝑀𝐶𝑅(𝑖𝑡𝑒𝑟) = 𝐻𝑀𝐶𝑅𝑚𝑎𝑥 −
(𝐻𝑀𝐶𝑅𝑚𝑎𝑥 − 𝐻𝑀𝐶𝑅𝑚𝑖𝑛)

𝑀𝑎𝑥𝐼𝑒𝑟𝑃1

× 𝐼𝑡𝑒𝑟𝑃1 (11) 

 𝑃𝐴𝑅(𝑖𝑡𝑒𝑟) =
(𝑃𝐴𝑅𝑚𝑎𝑥 − 𝑃𝐴𝑅𝑚𝑖𝑛)

𝜋/2
× 𝑎𝑟𝑐𝑡𝑎𝑛(𝐼𝑡𝑒𝑟𝑃1) + 𝑃𝐴𝑅𝑚𝑖𝑛 (12) 

where IterP1 is the current iteration, HMCRmax and HMCRmin are maximum and minimum harmony 

memory consideration ratios, respectively, PARmax and PARmin are maximum and minimum pitch 

adjacent ratios, respectively. Note that HMCR is a linearly decreasing function of iteration number. This 

increases the probability of selecting a design variable from its allowable range of values rather than from 

the harmony memory. Also, PAR is an increasing function of the iteration number that increases the 

probability of pitch adjustment for a design variable when it is selected from the HM matrix. These 

processes introduce more diversity into the population of design in the HM matrix. 

Just like HS, there are no guidelines that one can follow to select IHS parameters. Therefore, the best 

way is to start with a set of values then try different values to find the best combination. In this study, 

HMCRmax and PARmax of 0.85 and HMCRmin and PARmin of 0.35 show good performance.  
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3.3 Colliding Bodies Optimization (CBO) 

3.3.1 Background Material 

Kaveh and Mahdavi [10] developed this metaheuristic algorithm that is inspired by the laws of one-

dimensional collision. The algorithm works with a population of designs at each iteration. Here each 

design in the population is considered as an object or body with mass and velocity 

Using the laws of momentum and energy, a collision can be simulated between objects such as two 

balls in a billiard game or two cars in an accident. If there are no external forces acting on the system, the 

momentum of all objects before the collision equals the momentum of all objects after the collision. 

Conservation of linear momentum of two bodies in a one-dimensional collision is expressed as: 
 𝑚1𝑣1 + 𝑚2𝑣2 = 𝑚1𝑣1

′ + 𝑚2𝑣2
′  (13) 

where m1, v1, and v1
′  are mass, initial velocity and final velocity of the first object, respectively, and 

m2, v2, andv2
′  are mass, initial velocity and final velocity of the second object, respectively. 

For one-dimensional collision, let body 1 approach and collide with body 2; therefore v1 > v2. After 

the collision, the bodies separate; therefore v2
′ > v1

′ . The system loses some of its energy during the 

collision. The Coefficient of Restitution (COR) ε ≥ 0 indicates how much kinetic energy remains in the 

system after collision that is defined as:  
 

𝜀 =
Velocity of separation after collision

Velocity of approach before collision
=

𝑣2
′ − 𝑣1

′

𝑣1 − 𝑣2

 (14) 

Using Eqs. (13) and (14) the velocities after collision are calculated as follows [10]:  

  𝑣1
′ =

(𝑚1 − 𝜀 𝑚2)𝑣1 + (1 + 𝜀) 𝑚2𝑣2

𝑚1 + 𝑚2

   (15) 

 
𝑣2

′ =
(𝑚2 − 𝜀 𝑚1)𝑣2 + (1 + 𝜀 )𝑚1𝑣1

𝑚1 + 𝑚2

 (16) 

There are two cases of collision: 

i- A perfect elastic collision. There is no loss of kinetic energy in collision (𝜀 = 1).  

ii- An inelastic collision. There is part of the kinetic energy that is changed to some other form of energy 

(𝜀 < 1). For the most real bodies, the value of 𝜀 is between 0 and 1.  

3.3.2 Colliding Bodies Optimization  

In Colliding Bodies Optimization (CBO), the Colliding Bodies (CBs) (the current population of 

designs) are divided into two equal groups: stationary and moving objects [10]. The moving objects 

move toward and collide the stationary objects causing: 

1. Stationary objects to move to another position. 

2. Moving objects to change their position.  

After the collision, the position of both colliding and stationary bodies (population of designs) are 

updated using new velocities from Eqs. (15) and (16). The CBO can be executed in the following three 

steps: 

Step 1: Initialization. Initializing an array of CBs (initial population of designs) with random positions as 

follow: 
 𝑥𝑖

𝑗
= 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑛𝑖

𝑗
× (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛); 

 𝑖 = 1, 2, … , 2𝑛 and 𝑗 = 1, 2, … , 𝑛𝑣𝑎𝑟 

(

(17) 

where xi
j
 is the jth variable of the ith design in the CB matrix, xj,min and xj,max are the lower and 

the upper bounds of jth design variable, rni
j
 is a random number between 0 and 1, 2n is the total 

number of CBs or the population size, and nvar is number of design variables. To obtain discrete values 

for design variables, xi
j
 is rounded to the nearest permissible discrete value. 

Step 2: Search. This step is divided into 4 sub-steps: 

1- CBs ranking: use the merit function 𝐹(𝑿) to compute CBs' masses (Eq. (18)), and sort the CBs' in 

a descending order based on their calculated masses: 
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 𝑚𝑖 =

1/𝐹𝑖(𝑿)

∑ 1/𝐹𝑘(𝑿)2𝑛
𝑘=1

 ;     𝑖 = 1, 2, … , 2𝑛 (18) 

where mi is the mass of the ith body (design), Fi(X) and Fk(X) are the merit function values of the 

ith and kth bodies (designs), respectively. This way the designs are sorted from the best to the worst. 

Note that a larger mass in Eq. (18) corresponds to a smaller value for the merit function. 

2- Groups creation. CBs are equally divided into two groups:  

(i) Stationary CBs: these are the upper half of CBs; these are better designs that are assigned zero 

velocities before collision: 
 𝒗𝑠 = 𝟎;   𝑠 = 1, 2, … , 𝑛                                             (19) 

where vs is the velocity of the sth CB in the stationary group. 
(ii) Moving group: these are the lower part of CBs and they move toward the stationary CBs with 

velocity before the collision as: 

 𝒗𝑚 = 𝑿𝑚 − 𝑿𝑠;     𝑚 = 𝑛 + 1, … , 2𝑛  and 𝑠 = 𝑚 − 𝑛 (20) 

where vm and Xm are the velocity and position of the mth CB in the moving group, respectively, 
and Xs is the sth CB position in the stationary group. 

3- Evaluation after the collision. After the collision, velocities of stationary and moving CBs are 

calculated based on inelastic one dimensional collision of two bodies using Eqs. (15) and (16): 
 

    𝒗𝑠
′ =

(1 + 𝜀 ) 𝑚𝑚 𝒗𝑚

𝑚𝑚 + 𝑚𝑠

;   𝑠 = 1, 2, … , 𝑛 𝑎𝑛𝑑 𝑚 = 𝑠 + 𝑛 (21) 

and the velocity of the moving CBs is obtained as: 
 

𝒗𝑚
′ =

(𝑚𝑚 − 𝜀 𝑚𝑠) 𝒗𝑚

𝑚𝑚 + 𝑚𝑠

;   𝑚 = 𝑛 + 1, … , 2𝑛  𝑎𝑛𝑑 𝑠 = 𝑚 − 𝑛 (22) 

 
𝜀 = 1 −

𝐼𝑡𝑒𝑟𝑃2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃2

 (23) 

where vs
′  is the velocity of the sth CB of the stationary group after collision; vm and vm

′  are the 
velocity of the mth CB of the moving group before and after collision, respectively; ms is the mass 
of the sth CB of the stationary group; mm is the mass of the mth CB of the moving group; ε is 
the COR parameter; IterP2 is the current iteration of ECBO; and MaxIterP2 is the limit on number 
of iterations for ECBO. Note that ε is a decreasing function of the iteration number.  
4- CBs updating. The new position of CBs are calculated as follows:  

   𝑿𝑠
𝑛𝑒𝑤 = 𝑿𝑠 + [𝒓𝒏𝑠]𝒗𝑠

′ ;    𝑠 = 1,2, … , 𝑛 (24) 

   𝑿𝑚
𝑛𝑒𝑤 = 𝑿𝑚 + [𝒓𝒏𝑚]𝒗𝑚

′ ;     𝑚 = 𝑛 + 1, … ,2𝑛 (25) 

where 𝑿𝑠
𝑛𝑒𝑤  and 𝑿𝑚

𝑛𝑒𝑤are the new positions of the stationary and moving bodies, respectively, 𝑿𝑠 
and 𝑿𝑚 are the old positions of the stationary and moving bodies, respectively, rns and rnm are 
diagonal matrices with diagonal elements as random numbers between -1 and 1. To obtain discrete 
values of designs,  𝑿𝑠

𝑛𝑒𝑤 and 𝑿𝑚
𝑛𝑒𝑤 are rounded to the nearest permissible discrete values. 

Step 3: Terminating criterion control 

If the limit on the number of iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃2) is reached, the algorithm is terminated. 

Otherwise, go to Step 2.  

3.3.3 Enhanced Colliding Bodies Optimization (ECBO) 

This metaheuristic algorithm is an enhancement of the standard CBO. It uses memory to save some 

good designs and a mechanism to escape from local optima to get better solutions faster. This is done by 

adding two more sub-steps to step 2 of the standard CBO as follows [15]: 

1- Saving: this sub-step is added between sub-steps i and ii in step 2 of the standard CBO. In this sub-step, 

some historically good designs (having smaller merit function values) and their related information are 

saved in a matrix called Colliding Memory (CM). The good designs saved in CM replace the worst 

designs in the current population at the beginning of every iteration. After that, the CM is also updated. 

The number of designs saved is CMS. 

2- Escaping from local optima: this sub-step is added after the last sub-step of step 2 of the standard CBO. 

In this sub-step, a parameter called 𝑃𝑟𝑜 within [0, 1] is introduced. For each colliding body, 𝑟𝑛𝑝𝑖 (𝑖 =
 1, 2, … , 2𝑛), which is a random number uniformly distributed within [0, 1], is compared with 𝑃𝑟𝑜. If 

𝑃𝑟𝑜 > 𝑟𝑛𝑝𝑖, one component of the 𝑖𝑡ℎ CB is selected randomly and its value is regenerated as:  
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 𝑥𝑖
𝑗

= 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑛𝑝 × (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛);   𝑖 = 1,2, … . ,2𝑛 (26) 

where 𝑥𝑖
𝑗
 is the 𝑗𝑡ℎ variable of the 𝑖𝑡ℎ design, 𝑟𝑛𝑝 is a random number between 0 and 1, and 𝑥𝑗,𝑚𝑖𝑛 

and 𝑥𝑗,𝑚𝑎𝑥 are the lower and upper bounds of the 𝑗𝑡ℎ variable, respectively. The reason to change just 

one component of 𝑖𝑡ℎ CB is to protect the structures of CBs. This mechanism was shown to give 

diversity leading to better designs [15]. 

4 HHC: Hybrid Improved Harmony Search-Enhanced Colliding Bodies Algorithm  

4.1 Motivation for Hybrid Algorithm 

Compared to other metaheuristic algorithms, ECBO is simple, requires just one algorithmic 

parameter, and performs well in terms of the quality of the solution. IHS is easy to implement and it 

works fine with any kind of problem. However, both have some shortcomings that were observed while 

solving some problems. IHS needs specification of several algorithmic parameters that can affect the 

performance of the algorithm. ECBO makes steady progress towards the neighborhood of the final 

design whereas IHS makes quite rapid progress towards a similar neighborhood. Therefore, IHS requires 

fewer structural analyses compared to ECBO to reach a neighborhood of the final design. However, after 

reaching the neighborhood of the final design, the progress of IHS is quite slow to reach the final design 

whereas ECBO continues to make good progress towards the solution.  

The basic idea of the proposed HHC algorithm is to use IHS in Phase 1 to reach the neighborhood of 

the solution quickly and then switch to the ECBO to reach the final design. This way ECBO starts with 

some improved designs in Phase 2. This combination could lead to the final solution in fewer structural 

analyses which will be very useful while solving more complex problems, such as dynamic response 

optimization problems with discrete variables and non-differentiable functions. 

4.2 Phase 1: Improved Harmony Search (IHS)  

IHS is used in Phase 1 to obtain a good set of designs quickly for Phase 2. Two additional steps are 

added to IHS: 

i- Stopping Criteria: In addition to a maximum number of iteration criterion discussed in step 5 in 

section 3.1, a new merit function improvement criterion is added. That is, when there is no or slight 

improvement in the current merit function value after many iterations, this phase is terminated. The 

pseudo-code of this criterion is as follows: 

If1 𝐼𝑡𝑒𝑟𝑃1 ≥ 𝑟1 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 

If2 (𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1) − 𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1 − 𝑟2 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1))/𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1) ≤ 𝜀𝑃1 

Terminate Phase 1 

End2  

End1 

 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 = 10 × 𝑛𝑣𝑎𝑟 × number of elements in the discrete set (27) 

where 𝐼𝑡𝑒𝑟𝑃1 is the current iteration, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 is the limit number of iterations for Phase 1.  

Note that the parameters  𝑟1 , 𝑟2  and 𝜀𝑃1  are selected so that premature termination of the 

algorithm does not occur. They do not affect performance of the algorithm in any other way. The 

limit on number of iterations, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1  in Eq. (27), is dependent on the number of design 

variables and the number of elements in the discrete set. When the number of design variables and/or 

the number of elements in the discrete set increase, the search space enlarges. Therefore, 

metaheuristic algorithms need more iterations. Thus, Eq. (27) is used instead of a fixed number for 

each problem.  

ii- Domain reduction: During the first few iterations (compared with total number of iterations), IHS 

improves initial designs rapidly. Although, at this stage, the best design may be far from the final 

design, it was observed that some of the design variables in HM have the same or about the same 

values from iteration to iteration. These design variables are most likely at their best values in this 

phase. That is, the allowable range for these design variables can be reduced based on their mean 
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value and standard deviation. In other words, the design domain can be reduced based on the current 

state of HM. Section 4.4 provides more details for this step. 

4.3 Phase 2: Enhanced Colliding Bodies Optimization (ECBO) 

ECBO starts with 2𝑛 random designs and it keeps colliding them in search for a better solution, as 

explained earlier. Thus, if the initial population is not reasonably good, the algorithm most likely needs 

more iterations to find the final design. In each iteration, ECBO needs to evaluate the problem 2𝑛 times, 

where 2𝑛 is the population size.  

In HHC, some better designs generated by Phase 1 are passed on to the CB matrix. Then ECBO 

collides those designs to enhance them further. That is, starting with better designs, the total number of 

iterations for the ECBO algorithm can be reduced to obtain the final design. This is quite beneficial since 

ECBO needs to evaluate the problem 2𝑛 times in one iteration. For example, if the population size is 50 

in ECBO and the number of iterations to enhance the initial population is 100, then ECBO alone needs 

5000 structural analyses to improve the starting population. However, this improvement may be done 

with fewer structural analyses by replacing the initial population with some better designs of Phase 1 

results. Using the same population sizes of 50, 75, and 100 for both phases (passing all Phase 1 designs 

to Phase 2) did not improve the performance of the algorithm in terms of the quality of the solutions and 

the number of structural analyses needed to obtain the final designs. Overall, passing just some better 

designs of Phase 1 to Phase 2 makes the algorithm obtain the final design more often with a smaller 

number of structural analyses.  

In this phase, the stopping criterion is a maximum number of iterations as follows: 

 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃2 = 𝑛𝑣𝑎𝑟 × number of elements in the discrete set  (28) 

Similar to Eq. (27), Eq. (28) is based on number of design variables and number of elements in the 

discrete set.  

4.4 Domain Reduction Technique  

This additional step is added to Phase 1 to increase the possibility for IHS to find better designs faster 

to enhance the general performance of HHC in terms of the number of structural analyses required to find 

the best design reliably. Domain reduction can be done by looking at the standard deviation of each 

design variable values for some better designs in the HM matrix. When a design variable has a small 

standard deviation, its upper and lower limits in the allowable set of discrete values 𝐷𝑗  for the 𝑗𝑡ℎ 

design variable is changed as follows: 

 𝑥𝑗,𝑚𝑖𝑛 =  𝑥𝑗,𝑎𝑣𝑔 − 𝑥𝑗,𝑠𝑑   (29) 

 𝑥𝑗,𝑚𝑎𝑥 =  𝑥𝑗,𝑎𝑣𝑔 + 𝑥𝑗,𝑠𝑑 (30) 

 𝑥𝑗,𝑎𝑣𝑔 =
1

𝑛𝑑
∑ (𝑥𝑖

𝑗
)𝑛𝑑

𝑖=1    (31) 

 𝑥𝑗,𝑠𝑑 = √
1

𝑛𝑑−1
∑ (𝑥𝑖

𝑗
− 𝑥𝑗,𝑎𝑣𝑔)2𝑛𝑑

𝑖=1    (32) 

where 𝑥𝑗,𝑚𝑖𝑛 and 𝑥𝑗,𝑚𝑎𝑥 are the lower and upper bounds of the 𝑗𝑡ℎ design variable, respectively, 𝑥𝑗,𝑎𝑣𝑔 

is the average of 𝑗𝑡ℎ design variable, 𝑥𝑗,𝑠𝑑  is the standard deviation of 𝑗𝑡ℎ design variable, and 𝑛𝑑 is 

the number of designs that are considered in calculating the average and the standard deviation. Designs 

that are considered in this step to find the new upper and lower limits are important. Therefore, this step 

starts only after a certain number of iterations so that IHS has already improved initial designs enough. 

IHS with domain reduction shows a better convergence behavior over IHS without domain reduction. 

Domain reduction makes IHS obtain better designs in fewer iterations.   

Sometimes, the upper and lower limits of design variables become equal (the standard deviation is 

zero). That is, to avoid trapping in local optima, at least five elements are kept in the discrete set by 

modifying the upper and lower limits as follows:  

 𝑥𝑗,𝑚𝑖𝑛 =  𝑥𝑗,𝑎𝑣𝑔 − 2   (33) 

 𝑥𝑗,𝑚𝑎𝑥 =  𝑥𝑗,𝑎𝑣𝑔 + 2   (34) 

where -2 and +2 imply two elements below and two elements above the average value. Also, when the 

best design in the current HM has a design variable is at the modified lower or the upper bound, the 
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current lower or upper bound is adjusted using Eq. (33) or Eq. (34), respectively. The proposed domain 

reduction technique is dynamic. That is, the lower and upper bounds are adjusted based on the best 

design and the 𝑛𝑑 better designs in HM at each iteration. 

The domain reduction step starts when there are feasible and nearly feasible designs in the HM matrix 

(designs that have constraint violation of 5% or less). The minimum number of feasible or nearly feasible 

designs should not be one so that the upper and lower bounds become the same (in this study, 5% of the 

population is used as the minimum number of feasible or nearly feasible designs). After sorting of 

designs in HM from the best to the worst, the domain reduction procedure for each design variable is 

implemented using the following pseudo-code: 

If1 𝐼𝑡𝑒𝑟𝑃1 ≥ 𝑟3 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1   

If2 the number of feasible or nearly feasible designs ≥ 5% of 𝐻𝑀𝑆   

change the lower and upper limits using Eqs. (29) and (30), respectively. 

If3 the number of elements in the discrete set of the 𝑗𝑡ℎ design variable < 5 

change the lower and upper limits using Eqs. (33) and (34), respectively. 

End3  

If4 𝑥𝑗,𝑏𝑒𝑠𝑡 ≤ 𝑥𝑗,𝑚𝑖𝑛 or 𝑥𝑗,𝑏𝑒𝑠𝑡 ≥ 𝑥𝑗,𝑚𝑎𝑥 

change the lower or upper limits using Eq. (33) or Eq. (34), respectively. 

End4  

End2 

End1 

here 𝑟3 is the percentage of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 to start this criterion. 𝑟3 should be selected so that IHS has 

already improved designs. Based on observing IHS convergence behavior, it is recommended to use 

𝑟3 ≥10% of 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1. This way, the standard deviation can give more accurate results about the design 

variable state. 𝑥𝑗,𝑏𝑒𝑠𝑡 is the value of the 𝑗𝑡ℎ design variable of the best design in HM. 

Reduction of the design variable bounds shrinks the feasible set for the problem. This increases the 

possibility of obtaining better designs at the end of Phase 1 with a reduced number of structural analyses. 

Including this technique in Phase 2 showed no improvement in the algorithm's performance since ECBO 

can efficiently treat larger domains for design variables. Therefore domain reduction scheme is not 

suggested for the ECBO. The first numerical example in Section 5.1 is used to show how this step 

reduces the design domain and enhances the performance of the HHC significantly. The pseudocode of 

HHCD is shown in Algorithm 1. 

4.5 Evaluation of the Algorithms  

Multiple runs for the same problem will be executed to study the performance of the algorithms. 

Several metrics will be used in evaluations: 

1- Average of the final merit function values obtained with different runs. An average value that is closer 

to the best solution will indicate the ability of the algorithm to obtain the best design more often. 

2- Standard deviation of the final values of the merit functions obtained with different runs. A smaller 

value of the standard deviation will imply robustness of the algorithm to obtain the best design with 

different runs for the problem. 

3- Average of the number of structural analyses needed to reach the final solution. A smaller value will 

indicate more efficient algorithm. 

4- Standard deviation of the number of structural analyses. A smaller value will indicate the robustness 

of the algorithm to obtain the final design in approximately same number of structural analyses with 

different runs for the same problem. 

5. Numerical Examples 

Before the proposed HHC algorithm can be used to solve more complex and larger problems, it needs 

to be tested to solve some standard test problems and study its performance. In the following sections, 

some of the popular discrete truss optimization examples are solved for minimum structural weight to 

compare the performance of HHC with other metaheuristic optimization algorithms. Structures are 
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analyzed using the finite element (direct stiffness) method and algorithms are coded using MATLAB©. 

For all problems, Phase 1 parameters are set as follows: 𝐻𝑀𝑆 is 75, 𝐻𝑀𝐶𝑅𝑚𝑎𝑥 and 𝑃𝐴𝑅𝑚𝑎𝑥 are 0.85 

and 𝐻𝑀𝐶𝑅𝑚𝑖𝑛 and 𝑃𝐴𝑅𝑚𝑖𝑛 are 0.35. Phase 2 parameters are set as follows: population size (2𝑛) is 40, 

𝑃𝑟𝑜 is 0.5, and the number of designs to be saved in CM (CMS) is 4 (2𝑛/10). Phase 1 improvement 

criterion ratios, 𝑟1 and 𝑟2, are 0.25 and 0.10, respectively. Domain reduction ratios, 𝑟3 is 0.10 and 𝜀𝑃1 

is 10-3. These parameters are selected based on studying the convergence behavior of IHS. IHS obtains 

good and diverse designs (in comparison with initial random designs) after about 25% of the maximum 

number of iterations; then it converges very slowly. HHC's performance was evaluated using population 

sizes of 50, 75 and 100 for Phase 1 and population sizes of 20, 30, 40, and 50 for Phase 2 with 𝑃𝑟𝑜 of 

0.25, 0.4 and 0.5. The results showed that the combinations of these parameters worked. It is concluded 

that these parameters are not problem dependent and are kept fixed for all design examples. 

Since the optimization algorithms are stochastic in nature, 50 independent optimization runs were 

performed for each example to test the performance of HHC. Also, five example problems were solved 

but the detailed results for three examples are presented here. The other two examples had similar results 

and trends. They are: planar 15-bar truss and planar 52-bar truss [15]. They are omitted to keep a 

reasonable length of the paper.  

The number of maximum iterations varies based on the number of design variables and the number of 

elements in the discrete set (Eqs. 27 and 28). For IHS and ECBO, the maximum numbers of iterations 

were set to 50000 and 1000, respectively, to allow these algorithms to fully search for the best design. 

NSA (Number of Structural Analyses) is calculated as follows: 
 NSAHHC = 𝐻𝑀𝑆 + 𝑁𝐼𝑡𝑒𝑟𝑃1 + (𝑁𝐼𝑡𝑒𝑟𝑃2 − 1) × poplution size (35) 

 NSAECBO = 𝑁𝐼𝑡𝑒𝑟 × poplution size (36) 

 NSAIHS = 𝐻𝑀𝑆 + 𝑁𝐼𝑡𝑒𝑟 (37) 

where 𝐻𝑀𝑆 is harmony memory size, 𝑁𝐼𝑡𝑒𝑟 is the number of iterations and the subscript refers to the 

phase. In Eq. (35), (𝑁𝐼𝑡𝑒𝑟𝑃2 − 1) implies that the designs passed to Phase 2 do not need to be evaluated 

again. 

5- To study the domain reduction effects on the behavior of HHC, all numerical examples were tested 

without the domain reduction step as well. In the next sections, HHC refers to the algorithm without 

the domain reduction step, while HHCD refers to the algorithm with the domain reduction step. 

Algorithm 1. Pseudocode of HHCD. 

Inputs: : Phase1: 𝐻𝑀𝑆 = 75, 𝐻𝑀𝐶𝑅𝑚𝑎𝑥 = 0.85, 𝑃𝐴𝑅𝑚𝑎𝑥  = 0.85, 𝐻𝑀𝐶𝑅𝑚𝑖𝑛 = 0.35, 𝑃𝐴𝑅𝑚𝑖𝑛 = 0.35, 𝑟1 

=0.25, 𝑟2 = 0.1,  𝑟3 = 0.10 and 𝜀𝑃1 = 10-3. 

                 Phase2: 𝑛 = 20, 𝑃𝑟𝑜 =0 0.5, and 𝐶𝑀𝑆 = 4. 

Outputs: The location of the best design, its fitness value, and the number of analyses. 

Phase 1: IHS 

while1 𝐼𝑡𝑒𝑟𝑃1 ≥ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 

            Generate new designs using Eqs. 7 to 12. 

            Stopping criteria 

             If1 𝐼𝑡𝑒𝑟𝑃1 ≥ 𝑟1 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1 

                      If2 (𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1) − 𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1 − 𝑟2 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1))/𝑀𝑒𝑟𝑖𝑡(𝐼𝑡𝑒𝑟𝑃1) ≤ 𝜀𝑃1 

                           Terminate Phase 1 

                      End2  

             End1 

                       Domain reduction 

                        If3 𝐼𝑡𝑒𝑟𝑃1 ≥ 𝑟3 × 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1   

                  If4 the number of feasible or nearly feasible designs ≥ 5% of 𝐻𝑀𝑆   

                          change the lower and upper limits using Eqs. (29) and (30), respectively. 

                               If5 the number of elements in the discrete set of the 𝑗𝑡ℎ design variable < 5 

                                    change the lower and upper limits using Eqs. (33) and (34), 

respectively. 

                               End5 

                                If6 𝑥𝑗,𝑏𝑒𝑠𝑡 ≤ 𝑥𝑗,𝑚𝑖𝑛 or 𝑥𝑗,𝑏𝑒𝑠𝑡 ≥ 𝑥𝑗,𝑚𝑎𝑥 

                                      change the lower or upper limits using Eq. (33) or Eq. (34), 
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respectively. 

                                End6 

                    End4 

               End3 

 

end while1 

Pass the best 40 designs to Phase 2 

Phase 2: ECBO 

while2 𝐼𝑡𝑒𝑟𝑃2 ≥ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃2 

            Generate new designs using Eqs. 18 to 26. 

end while2 

5.1 Planar 10-bar truss 

Figure 1 shows the configuration of the 10-bar truss. This popular benchmark example has been 

solved by many researchers, e.g., Rajeev and Krishnamoorthy [17], Li et al. [16], Xiang et al. [18], Camp 

[19], and others. For all members, the modulus of elasticity is 10,000 ksi and material density is 0.1 

lb/in3. The allowable displacement for all nodes in both vertical and horizontal directions equals ±2.0 in. 

All members are subjected to stress limitations of 25 ksi for both tension and compression. The structure 

is subjected to two vertical downward loads, P=100 kips, at joint 2 and 4. Cross-sectional areas of all 

members are the design variables that are selected form the discrete set of 42 elements as follows:  
D=[1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 

3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 

14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] (in2).  

(38) 

 

As noted earlier, this study case is used to also show how HHCD works. In this illustrative example, 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1=10×10×42=4200 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃2=10×42=420. The rest of the internal parameters are set as 

mentioned earlier. Phase 1 (IHS) starts with 75 random designs that are evaluated using Eq. (4). Table 1 

gives the best design among these 75 initial designs. The total structural weights (and merit function 

values) for HHC and HHCD are 4888.346 lb (38724.564) and 4929.869 lb (26734.436) with values of 

the violation parameter 𝐺 as 1.815 and 1.329, respectively. After iteration 420 (0.1× 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑃1), the 

domain reduction process starts. Table 1 shows that at the end of Phase 1 some design variables' bounds 

were reduced based on the method discussed in Section 4.3. Due to this step, the possible design 

combinations are reduced from 1.708e16 (4210) to 5.976e9 in Phase 1. For example, the bounds of the 

first design variable were changed many times after iteration 420 until its upper and lower limits became 

sections 28 and 42 in the set D, respectively.  

 At the end of the Phase 1, the total structural weights for HHC and HHCD are 5959.483 lb and 

5788.563 lb, respectively. Since there is no violation of constraints, the merit function value is same as 

the structural weight. Phase 1 terminates at iteration 1051 for HHC and HHCD while the maximum 

number of iterations allowed for this phase is 4200. This implies that the proposed new stopping criterion 

terminates this phase due to no improvement in the current best design.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Schematic of 10-bar planar truss. 
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The goal of the Phase 1 is to provide Phase 2 with better designs that may be closer to the best 

solution so that ECBO requires fewer iterations. Study of designs in HM shows that HHCD was able to 

improve not only the best design but also all the designs in HM. This explains the reason that HHCD 

needs a fewer number of structural analyses. At the end of Phase 1, the best 40 designs in HM are passed 

to the CB matrix. Therefore, Phase 2 starts with improved designs instead of random designs. In this 

example, Phase 1 iterations of 1051 are equivalent to just 26 iterations of ECBO with a population size of 

40. At iteration 1126 (1051 for Phase 1 and 75 for Phase 2), the algorithm obtains the best structural 

weight of 5490.738 lb with no constraint violation. Phase 2 needs 76 iterations to find the best design 

that, generally, is less than what ECBO would need (see Table 2). HHCD shows similar behavior in all 

other numerical examples. 

Figure 2 demonstrates the convergence history of the best run of IHS, ECBO, HHC, and HHCD. It 

shows that IHS and Phase 1 of HHC and HHCD reach better designs faster than ECBO. HHCD 

convergences to the best design faster than ECBO and HHC because Phase 2 starts with better designs.  

 

 

Table 1 Domain reduction technique illustration for planar 10-bar truss structure. 

Design 

variables 

(in2) 

Best initial design 

Best design at end of  

Phase 1 

Best design at end of  

Phase 2 

Design variables 

bounds at end of 

Phase 1b 

HHCD 

HHC HHCD HHC HHCD HHC HHCD 
Lower 

bound 

Upper 

bound 

1 A1 15.50 (33a) 16.90 (35) 33.50 (42) 30.00 (41) 33.50 (42) 33.50 (42) 28 42 

2 A2 1.62 (1) 13.9 (31) 2.38 (5) 2.38 (5) 1.62 (1) 1.62 (1) 1 7 

3 A3 33.50 (42) 13.5 (30) 26.50 (40) 30.00 (41) 22.90 (39) 22.90 (39) 27 42 

4 A4 3.87 (17) 14.20 (32) 13.50 (30) 14.20 (32) 14.20 (32) 14.20 (32) 24 34 

5 A5 3.55 (14) 7.97 (28) 3.13 (11) 3.09 (10) 1.62 (1) 1.62 (1) 2 12 

6 A6 4.18 (19) 5.12 (25) 3.63 (15) 2.38 (5) 1.62 (1) 1.62 (1) 1 7 

7 A7 3.84 (16) 3.84 (16) 14.20 (32) 13.50 (30) 7.97 (28) 7.97 (28) 28 32 

8 A8 22.00 (38) 22.90 (39) 22..90 (39) 22.90 (39) 22.90 (39) 22.90 (39) 21 41 

9 A9 4.18 (19) 3.47 (13) 19.90 (37) 16.90 (35) 22.00 (38) 22.00 (38) 30 37 

10 A10 22.00 (38) 16.00 (34) 1.62 (1) 2.38 (5) 1.62 (1) 1.62 (1) 2 6 

Weight (lb) 4888.346 4929.869 5959.483 5788.563 5490.738 5490.738 - - 

𝐺 (Eq.5) 1.815 1.329 0.0 0.0 0.0 0.0 - - 

𝐹 (Eq.4) 38724.564 26734.436 5959.483 5788.563 5490.738 5490.738 - - 
aSection number in the set D.  bLower and upper bounds for HHC remain fixed at 1 and 42 for all members. 

 
Fig. 2 Comparison of convergence rates for planar 10-bar truss. 
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When IHS stops improving design at iteration 4101. Note that every iteration in ECBO and Phase 2 of 

HHC and HHCD requires 40 structural analyses.  

Table 2 summarizes results available in the literature with four different algorithms, and results from 

the present study. It also shows the mean values and standard deviations of the best structural weight 

from 50 independent runs for IHS, ECBO, HHC, and HHCD. The results show that GA, HPSO, and IHS 

did not obtain the best design. HHCD was able to find the best design after 4126 structural analyses. This 

is the same weight as obtained by SA, BB-BC, ECBO, and HHC; however, HHCD needs fewer 

structural analyses to obtain the best solution.  

Figure 3 shows the best merit function value for each of the 50 runs for IHS, ECBO, HHC, and 

HHCD. It is seen that IHS was not able to obtain the final design in any run; HHC was able to reach the 

final design 42 times; and ECBO reached the final design 26 times. It is seen that HHC performs better 

than ECBO as well as IHS. 

Figure 3 shows that HHCD was able to find the best solution 49 times. The average and the standard 

deviation of 50 runs (Table 2) and Fig. 3 demonstrate that HHCD is very effective and robust algorithm. 

Its average for the structural weight is closest to the best solution and its standard deviation is the 

smallest. This is important because it shows that HHCD does not require multiple runs to find the best 

solution. The average and standard deviation of number of structural analyses shows that HHCD is 

efficient (Table 2). IHS has the lowest NSA average but the quality of the solution is not good.  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Table 2 Comparison of optimal designs for 10-bar truss problem. 

Design variable 

(in2) 

GA 

[17] 

HPSO 

[16] 
SA [18] 

BB-BC 

[19] 

This work 

IHSd ECBOe HHC HHCD 

1 A1 33.50 30.00 33.50 33.50 30.00 33.50 33.50 33.50 

2 A2 1.62 1.62 1.62 1.62 2.62 1.62 1.62 1.62 

3 A3 22.00 22.90 22.90 22.90 22.90 22.90 22.90 22.90 

4 A4 15.50 13.50 14.20 14.20 14.20 14.20 14.20 14.20 

5 A5 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62 

6 A6 1.62 1.62 1.62 1.62 1.80 1.62 1.62 1.62 

7 A7 14.20 7.97 7.97 7.97 11.50 7.97 7.97 7.97 

8 A8 19.90 26.50 22.90 22.90 22.00 22.90 22.90 22.90 

9 A9 19.90 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

10 A10 2.62 1.80 1.62 1.62 2.38 1.62 1.62 1.62 

Best weight (lb) 5613.580 5531.984 5490.738 5490.738 5586.289 5490.738 5490.738 5490.738 

NSAa 800 50000 10500 8694 4176 7960 4566 4126 

𝐺 (Eq. 5) 3.77×10-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Weight 

(lb) 

Average  N/A N/A N/A 5494.17c 5680.406 5519.357 5499.116 5490.873 

SDb  N/A N/A N/A 12.42 40.582 53.183 30.732 0.943 

NSA 
Average N/A N/A N/A N/A 6999 19378 9821 8979 

SD N/A N/A N/A N/A 2728 6215 5038 3890 
aNSA is number of structural analyses. bSD is the standard deviation of 50 independent runs.  cThe average of 100 runs. 
dThe maximum number of iterations is 50000.  eThe maximum number of iterations is 1000. 

 
Fig. 3 Comparison of best designs from 50 runs for the 10-bar truss structure. 
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5.2 Spatial 25-bar truss  

Figure 4 shows the configuration of the spatial 25-bar truss. This example was solved in Rajeev and 

Krishnamoorthy [17], Lee et al. [20], Li et al. [16], Xiang et al. [18], Camp [19], and Kaveh and Mahdavi 

[15]. For all members, the modulus of elasticity is 10,000 ksi and material density is 0.1 lb/in3. The 

allowable displacement for all nodes in both vertical and horizontal directions is ±0.35 in. All members 

are subjected to stress limitations of 40 ksi for both tension and compression. This spatial truss was 

subjected to the two loading conditions shown in Table 3. The structure includes 25 members organized 

into 8 groups as given in Table 4. Design variables are selected form the discrete set of 30 elements as 

follows:  
 D=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 

2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4] (in2). 
(39) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this study case, 𝜓 was 10 (in Eq. 4) because algorithms found some infeasible solutions with very 

small violation when 𝜓 was 1. HHCD was able to obtain the best design after 2043 structural analyses 

(759 iterations) as shown in Figure 5 and Table 4. Figure 5 shows the convergence history of the best run 

of IHS, ECBO, HHC, and HHCD. It shows that HHCD and HHC convergence faster than ECBO to the 

best design where IHS did not obtain the best design. Table 4 shows that although HS, HPSO, SA, BB-

BC and ECBO obtained the best design, both HHC and HHCD need fewer structural analyses. Also, 

Table 4 explains that HHCD has the lowest average and standard division of NSA and the best average 

and standard division of final designs from 50 runs while HHC is close second. Although, BB-BC shows 

slightly better stability than HHCD, it needs more structural analyses compared to HHCD to obtain the 

best design. GA did not reach the final design.  

 Figure 6 shows the penalized weight for each of the 50 runs for IHS, ECBO, HHC, and HHCD. It 

shows that IHS did not reach the final design in any run. HHCD reached the final design more than HHC 

and ECBO. 

 

 
Fig. 4 Schematic of 25-bar space truss. 

Table 3 Load conditions of the spatial 25-bat truss. 

Case 
Load 

condition 
Nodes 

Loads (kips) 

Px Py Pz 

1 1 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

2 

1 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 

2 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.5 0.0 0.0 
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Fig. 5 Comparison of convergence rates for 25-bar spatial truss. 

Table 4 Performance comparison for the 25-bar spatial truss. 

Design variable 

(in2) 

GA 

[17] 

HS 

[18] 

HPSO 

[16] 

SA 

[18] 

BB-BC 

[19] 

ECBO 

[15] 

This work 

IHS4 ECBOf HHC HHCD 

1 A1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 A2-A5 1.8 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 

3 A6-A9 2.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

4 A10-A11 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 A12-A13 0.1 2.1 2.1 2.1 2.1 2.1 1.9 2.1 2.1 2.1 

6 A14-A17 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

7 A18-A21 1.8 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 

8 A22-A25 3.0 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

Best weight (lb) 546.013 484.854 484.854 484.854 484.854 484.854 485.054 484.854 484.854 484.854 

NSA 800 13523 25000 7900 9090 61200a 13368  20280  2083 2043 

𝐺 (Eq. 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Weight 

(lb) 

Average  N/A N/A N/A 
486.354

b 485.10c 485.89d 490.547 485.575 485.480 485.252 

SD  N/A N/A N/A N/A 0.44 N/A 4.986 1.244 0.850 0.505 

NSA's 
Average N/A N/A N/A N/A N/A N/A 23791 17694 8288 7045 

SD N/A N/A N/A N/A N/A N/A 12039 10876 4194 3233 
aPopulation size is 30. bThe average of 12 runs. cThe average of 100 runs. dThe average of 20 runs.  
eThe maximum number of iterations is 50000.  fThe maximum number of iterations is 1000.  
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5.3 Spatial 72-bar truss structure 

Figure 7 shows the configuration of the spatial 72-bar truss. This example was solved in Li et al. [16], 

Kaveh and Khayat [11], and Kaveh and Mahdavi [15]. For all members, the modulus of elasticity is 

10000 ksi and material density is 0.1 lb/in3. The allowable displacement for all nodes in both vertical and 

horizontal directions equals ±0.25 in. All members are subjected to stress limitations of 25 ksi for both 

tension and compression. This spatial truss was subjected to the two loading conditions, as shown in 

Table 5. The structure includes 72 members organized into 16 groups (Table 6). Design variables are 

selected from the discrete set of 64 elements as follows:  
 D=[0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785, 0.994, 1.000, 1.228, 

1.266, 1.457, 1.563, 1.620, 1.800, 1.990, 2.130, 2.380, 2.620, 2.630, 2.880, 2.930, 3.090, 3.13, 3.380, 

3.470, 3.550, 3.630, 3.840, 3.870, 3.880, 4.180, 4.220, 4.490, 4.590, 4.800, 4.970, 5.120, 5.740, 

7.220, 7.970, 8.530, 9.300, 10.850, 11.500, 13.500, 13.900, 14.200, 15.500, 16.000, 16.900, 18.800, 

19.900, 22.000, 22.900, 24.500, 26.500, 28.000, 30.000, 33.500] (in2). 

 

(40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Comparison of convergence rates for 25-bar spatial truss. 

 

 

Fig. 7 Schematic of 72-bar space truss. 
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Table 6 provides a comparison between some best designs reported in the literature along with those 

obtained in this study. HHCD obtained best design after 20836 structural analyses (3017 iteration). The 

best structural weight of 389.334 lb was obtained by IRO, ECBO, and HHC after 17925, 95400 (35100 

in this study), 26476 structural analyses, respectively. It is seen that both HHC and HHCD performed 

better than IHS and ECBO. Note that in ECBO (this work), HHC and HHCD, design variables 2 and 6 

values are 0.442 and 0.563, respectively, whereas in IRO and ECBO (Kaveh and Mahdavi, 2015), they 

are 0.563 and 0.442. In this study case, HHCD needs more analyses than IRO; however, HHCD has 

smaller average value of 50 independent runs (see Table 6).  

Figure 8 shows the convergence history of IHS, ECBO, HHC, and HHCD. It shows at HHCD 

convergences faster than IHS, ECBO, and HHC. Figure 9 and Table 6 demonstrate that HHCD is more 

stable than IRO, CBO, ECBO, IHS, and HHC in terms of the quality of final designs. For a similar 

quality of design other algorithms needed more simulations (NSA averages in Table 6). 

Table 5 Load conditions of the spatial 72-bat truss. 

Case Nodes 
Loads (kips) 

Px Py Pz 

1 17 5.0 5.0 -5.0 

2 

17 0.0 0.0 -5.0 

18 0.0 0.0 -5.0 

19 0.0 0.0 -5.0 

20 0.0 0.0 -5.0 

 

Fig. 8 Comparison of convergence rates for 72-bar spatial truss. 
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6 Discussion and Conclusions  

 A new two-phase metaheuristic optimization algorithm was presented in this study. Phase 1 used 

Improved Harmony Search (IHS) with a new domain reduction technique that used statistical analysis of 

some of the better designs in the current population. Phase 2 used the Enhanced Colliding Bodies 

Optimization (ECBO) where the initial population consisted of some of the better designs from Phase 1. 

With this better initial population, ECBO obtained the best design more efficiently. Also, in Phase 1, an 

improved stopping criterion was proposed that terminated the phase when there was no or small 

improvement in the best design after many iterations.  

 

Fig. 9 Comparison of convergence rates for 72-bar spatial truss. 

Table 6 Performance comparison for the 72-bar spatial truss. 

Design variable (in2) 
HPSO 
[16] 

IRO 
[11] 

CBO 
[15] 

ECBO 
[15] 

This work 

IHSc ECBOd HHC HHCD 

1 A1-A4 4.970 1.990 2.130 1.990 2.62 1.990 1.990 1.990 

2 A5-A12 1.228 0.563 0.563 0.563 0.442 0.442 0.442 0.442 

3 A13-A16 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

4 A17-A18 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

5 A19-A22 2.880 1.228 1.228 1.228 1.457 1.228 1.228 1.228 

6 A23-A30 1.457 0.442 0.442 0.442 0.563 0.563 0.563 0.563 

7 A31-A34 0.141 0.111 0.141 0.111 0.141 0.111 0.111 0.111 

8 A35-A36 0.111 0.111 0.111 0.111 0.196 0.111 0.111 0.111 

9 A37-A40 1.563 0.563 0.442 0.563 0.442 0.563 0.563 0.563 

10 A41-A48 1.228 0.563 0.563 0.563 0.602 0.563 0.563 0.563 

11 A49-A52 0.111 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

12 A53-A54 0.196 0.111 0.111 0.111 0.141 0.111 0.111 0.111 

13 A55-A58 0.391 0.196 0.196 0.196 0.25 0.196 0.196 0.196 

14 A59-A66 1.457 0.563 0.563 0.563 0.563 0.563 0.563 0.563 

15 A67-A70 0.766 0.391 0.391 0.391 0.442 0.391 0.391 0.391 

16 A71-A72 1.563 0.563 0.563 0.563 0.391 0.563 0.563 0.563 

Best weight (lb) 933.094 389.334 391.230 389.334 418.380 389.334 389.334 389.334 

NSA 50000 17925 160200 95400a 16918 30240 26476 20836 

𝐺 (Eq. 5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Weight (lb) 
Average N/A 408.17 456.69 391.59b 448.554 391.173 391.242 390.632 

SD N/A N/A N/A N/A 9.412 2.073 2.105 1.679 

NSA 
Average N/A N/A N/A N/A 14135 37531 32208 27442 

SD N/A N/A N/A N/A 6037 8858 7994 6884 
aPopulation size is 30. bThe average of 20 runs. cThe maximum number of iterations is 50000. 
dThe maximum number of iterations is 1000.  
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Detailed results for three standard truss test structures were presented and discussed. Table 7 

summarize comparative data obtained with IHS, ECBO, HHC and HHCD for the three design examples. 

It shows, in term of the quality of the solution, HHCD obtained the best designs with the lowest averages 

and standard deviations from 50 independent runs. HHC is close second behind HHCD. Figure 10 is a 

bar chart representation of the number of structural analyses needed to reach final designs of the three 

numerical examples with the four methods. The best structural weight values are also shown with bar 

charts. It shows that IHS does not reach the best design for any of the examples. ECBO needs the largest 

number of analyses to obtain the final designs. However, HHC and HHCD need a smaller number of 

simulations to reach the final designs. Tables 7 and Fig. 10 show that HHCD is quite stable and more 

efficient among all metaheuristic algorithms that are discussed in this study. For the 3-D truss problems 

(the last two examples), HHCD shows an outstanding performance in terms of the number of structural 

analyses needed to obtain the best design. This is an attractive feature of the proposed metaheuristic 

algorithm with domain adjustment.  

Based on the comparison with other metaheuristic optimization algorithms for the numerical 

examples, the following conclusions are drawn:  

1- The 50 independent runs for each example showed that the proposed HHC algorithm was quite 

reliable in obtaining the best designs for each run. Also, HHCD had the lowest averages and standard 

deviations for the final cost function values. This implies that fewer runs are needed to obtain the 

best design compared to many other stochastic algorithms. 

2- The proposed domain adjustment approach worked very well with IHS. 

3- The proposed hybrid algorithm with domain adjustment was able to find the best design with fewer 

structural analyses by a substantial amount in some cases. This efficiency is critically important for 

solving more complex applications, such as nonlinear structural analysis problems, dynamic response 

optimization problems, and multidisciplinary optimization problems. 

 

 

 

 

 
Fig. 10 Comparison of number of structural analyses to reach the best design (*this design is not 

optimum). 
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